

Bachelor of Information Communication Technology (Hons)

Diploma in Information Communication Technology

Academic Year I

Module Name:

WEB APPLICATION DEVELOPMENT

Module Outline:

1. Introduction to Internet, WWW and Web Browsers

2. Introduction to What is a Website

3. Introduction to Web Application

4. Introduction to Web Development

5. Introduction to HTML

6. Introduction to CSS

7. Introduction to PHP

1 | P a g e

01. Introduction to Internet, WWW and Web Browsers

Internet is a global communication system that links together thousands of individual

networks. It allows exchange of information between two or more computers on a network.

Thus internet helps in transfer of messages through mail, chat, video & audio conference,

etc. It has become mandatory for day-to-day activities: bills payment, online shopping and

surfing, tutoring, working, communicating with peers, etc.

In this topic, we are going to discuss in detail about concepts like basics of computer

networks, concept of internet, basics of internet architecture, services on internet, World

Wide Web and websites, communication on internet, internet services, preparing computer

for internet access, ISPs and internet access techniques, web browsing software, popular

web browsing software, configuring web browser, search engines, popular search

engines/search for content, accessing web browser

No Internet, WWW, Web Browsers Concepts & Description

1
Basics of Computer Networks
Computer network is an interconnection between two or more hosts/computers. Different
types of networks include LAN, WAN, MAN, etc.

2

Internet Architecture
Internet is called the network of networks. It is a global communication system that links
together thousands of individual networks. Internet architecture is a meta-network, which
refers to a congregation of thousands of distinct networks interacting with a common
protocol

3
Services on Internet
Internet acts as a carrier for numerous diverse services, each with its own distinctive
features and purposes.

4
Communication on Internet
communication can happens through the the Internet by using Email, Internet Relay Chat,
Video Conference etc.

5

Web Browsing Software
"World Wide Web" or simple "Web" is the name given to all the resources of internet. The
special software or application program with which you can access web is called "Web
Browser".

6
Configuring Web Browser
Search Engine is an application that allows you to search for content on the web. It
displays multiple web pages based on the content or a word you have typed.

7
Search Engines
Search Engine is an application that allows you to search for content on the web. It
displays multiple web pages based on the content or a word you have typed.

8
Search for the content
Search Engine helps to search for content on web using the different stages

9
Accessing Web Browser
There are several ways to access a web page like using URLs, hyperlinks, using
navigating tools, search engine, etc.

https://www.tutorialspoint.com/computer_concepts/computer_concepts_basics_of_computer_networks.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_internet.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_services_on_internet.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_communication_on_internet.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_web_browsing_software.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_configuring_web_browser.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_search_engines.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_search_for_content.htm
https://www.tutorialspoint.com/computer_concepts/computer_concepts_accessing_web_browser.htm

2 | P a g e

Computer Concepts - Services on Internet

Internet acts as a carrier for numerous diverse services, each with its own distinctive

features and purposes.

World Wide Web and Websites

 World Wide Web is being used on internet right now. WWW is the name given to all

resources of the internet, which you can access with a web browser. It was created

as a method for incorporating footnotes, figures and cross-references into online

documents in the European Particle Physics Laboratory in Geneva, Switzerland in

1989. The web makers wanted to make a simple method to access documents that

are stored on a network, without searching through indexes or directories of files,

and without physically copying documents from one computer to another before

viewing them. To do this, they made a way to "connect" documents that were stored

in different locations on a single computer, or different computers on a network.

Terminologies related to WWW

 Web documents can be linked together, and are called "Hypertext". Hypertext

systems offer an easy approach to manage huge collections of data, which includes

text files, pictures, sounds, movies and more. In a hypertext system, when you view

a document or your computer screen, you can also access all the data that is linked

to it. To support hypertext documents, web uses a protocol called "Hypertext

Transfer Protocol" (HTTP). A hypertext document is a specially encoded file that

uses "Hypertext Markup Language" (HTML). HTTP and Links are foundation for

WWW. Web page is displayed in the web browser. It is a kind of word processing

document which contains pictures, sounds and even movies along with text.

Computer Concepts - Web Browsing Software

"World Wide Web" or simple "Web" is the name given to all the resources of internet. The

special software or application program with which you can access web is called "Web

Browser".

There’s an entire history of web browsers. Before the web browsers we knew today,

 1990 – The WorldWideWeb (not to be confused with the World Wide Web) was the

first browser ever created by W3C Director Tim Berners-Lee, then renamed Nexus to

differentiate from the actual World Wide Web. Unlike today, this was the only

browser and the only way to access the web.

 1992 – Lynx was a texted-based browser that couldn’t display any graphic content.

3 | P a g e

 1993 – Mosaic was the first browser to allow images embedded in text making it “the

world’s first most popular browser”.

 1994 – A noticeable improvement to Mosaic came Netscape Navigator.

 1995 – Internet Explorer made its debut as Microsoft’s first web browser.

 1996 – Opera started as a research project in 1994 that finally went public two years

later. This was also arguably the beginning of the browser wars, mainly between IE 3

and Navigator 3 as Internet Explorer inched ahead with new capabilities.

 2003 – Apple’s Safari browser was released specifically for Macintosh computers

instead of Navigator.

 2004 – Mozilla launched Firefox as Netscape Navigator faded out.

 2007 – Mobile Safari was introduced as Apple’s mobile web browser and continues

to dominate the iOS market.

 2008 – Google Chrome appeared to soon take over the browser market.

 2011 – Opera Mini was released to focus on the fast-growing mobile browser

market.

 2015 – Microsoft Edge was born to combat Google.

List of Top 09 Internet Browsers - PC

1. Chrome

2. Firefox

3. IE

4. Safari

5. Edge

6. Opera

7. UC Browser

8. Brave

9. Others – Chromium, Maxthon

List of Top 10 Internet Browsers – Mobile

1. Chrome

2. Safari

3. UC Browser

4. Samsung Internet

5. Opera

6. Android

7. KaiOS

4 | P a g e

8. QQ Browser

9. Firefox

10. Other – Android Native Browser, KaiOS, and QQ Browser

What is a Website?

A website is a group of globally accessible, interlinked web pages which have a single

domain name. It can be developed and maintained by an individual, business or

organization. The website aims to serve a variety of purposes. Example: Blogs.

A website is hosted on a single or multiple web server. It is accessible via a network like the

Internet or a private local area network via IP address.

Why you need a Website?

Here, are prime reasons why someone need a website:

 An effective method to showcase your products and services

 Developing a site helps you to create your social proof

 Helps you in branding your business

 Helps you to achieve your business goals

 Allows you to increase your customer support

Characteristics Of Website

 Quality and relevant Web Content is which richly displayed.

 User-friendly navigation and web design

 Can be easily searched using search engines like Google.

What is a Web Application?

A web application is a software or program which is accessible using any web browser. Its

frontend is usually created using languages like HTML, CSS, Javascript, which are

5 | P a g e

supported by major browsers. While the backend could use any programming stack like

LAMP, MEAN, etc. & programming languages PHP, Python, Ruby, Java, C#. Unlike mobile

apps, there is no specific SDK (Software development kit) developing web applications.

Web applications are more popular because of the following reasons

 Compared to desktop applications, web applications are easier to maintain by as

they use the same code in the entire application. There are no compatibility issues.

 Web applications can be used on any platform: Windows, Linux, Mac… as they all

support modern browsers.

 Mobile App store approval not required in web applications.

 Released any time and in any form. No need to remind users to update their

applications.

 You can access these web applications 24 hours of the day and 365 days a year

from any PC.

 You can either make use of the computer or your mobile device to access the

required data.

 Web applications are a cost-effective option for any organization. Seat Licenses for

Desktop software are expensive.

 Web-Based Apps are Internet-enabled apps that are accessed through the mobile's

web browser. Therefore, you don't require to download or install them.

Below given are the prime difference between web application and web site:

Parameter Web Application Website

Created for
A web application is designed for
interaction with the end user

A website mostly consists of static content.
It is publicly accessible to all the visitors.

6 | P a g e

User interaction
In a web application, the user not
only read the page content but
also manipulate the restricted data.

A website provides visual & text content
which user can view and read, but not
affect it 's functioning.

Authentication

Web applications need
authentication, as they offer a
much broader scope of options
than websites.

Authentication is not obligatory for
informational websites. The user may ask
to register to get a regular update or to
access additional options. This features not
available for the unregistered website
visitors.

Task and
Complexity

Web application functions are quite
higher and complex compared to a
website.

The website displays the collected data and
information on a specific page.

Type of
software

The web application development
is part of the website. It is itself not
a complete website.

The website is a complete product, which
you access with the help of your browser.

Compilation
The site must be precompiled
before deployment

The site doesn't need to be pre-compiled

Deployment
All changes require the entire
project to be re-compiled and
deployed.

Small changes never require a full re-
compilation and deployment. You just need
to update the HTML code.

What is Web Development?

Web development is basically the tasks associated with developing websites for hosting via

intranet or internet. The web development process involves web design, web content

development, client-side/server-side scripting and network security configuration.

A website can either be a simple one-page site, or it could be an incredibly complex web

application. When you view your website on the web in a browser, it is because of all the

processes involved in web development.

7 | P a g e

The web development hierarchy is as follows:

1. Client-side coding (Front End).

2. Server-side coding (Back End).

3. Data and Databases.

Basics: Web Development What we need?

Websites are a bunch of files stored on computers called servers. The Servers are

computers that are used to host websites and store the website files. These servers are

connected to the giant network called the World Wide Web.

Browsers are programs that you run on your computer. They load the website files via your

internet connection.

01.Client-side coding (Front End)

there are 3 main components that make up every website:

HTML – Hyper Text Markup Language (HTML)

 Is the foundation of all websites It’s the main file type that is loaded in your browser

when you look at a website. This scripting language is used to structure the different

parts of our content and define what their meaning or purpose is.

CSS – Cascading Style Sheets (CSS)

 is used for styling the HTML elements. It provides 1000s of styling functions which

are used to style the HTML elements defined by us. It is the language that we use to

style and layout our web content.

JavaScript

 This programming language allows you to interact with elements on the website and

to manipulate them. While CSS adds style to HTML, JavaScript adds interactivity

and makes a website more dynamic.

Front End Skills

It is important to make sure that web applications download fast and are responsive to user

interaction, regardless of a users bandwidth, screen size, network, or device capabilities.

The intermediate Front End Skills include:

8 | P a g e

Responsive Design

 We use different gadgets like computers, phones, and tablets to look at web pages.

The web pages adjust themselves to the device you’re using without any extra effort

from your end. This is due to the responsive design. One major role of a front end

developer is to understand the responsive design principles and how to implement

them on the coding side. It is an intrinsic part of CSS frameworks like the Bootstrap.

These skills are all interconnected and so as you learn one you’ll often be making

progress in the others at the same time.

Build Tools

 The modern web browsers come equipped with developer tools for testing and

debugging. These tools allow you to test the web pages in the browser itself and

finds out how the page is interpreting the code. Browser developer tools usually

consist of an inspector and a JavaScript console. The inspector allows you to see

what the runtime HTML on your page looks like, what CSS is associated with each

element on the page. The JS console allows you to view any errors that occur as the

browser tries to execute your JS code.

Version Control / Git

 Version control is the process of tracking and controlling changes to your source

code so that you don’t have to start from the beginning if anything goes wrong. It is a

tool that is used to track the changes made previously so that you can go back to a

previous version of your work and find out what went wrong without tearing the

whole thing down.

02. Server-side coding (Back End)

The back-end layer forms a dynamic connection between the front-end and the database.

To get this layer working it’s important to know at least one of the programming languages

such as Python, Java, PHP, Ruby, etc and knowledge of server-side frameworks such as

NodeJS is mandatory.

Python

 is an open-source, object-oriented programming language, one of the favorite

languages of most software and web developers.

Java

 is an open-source, high-level programming language which was released by Sun

Microsystems in 1996. It follows the Write Once Run Anywhere (WORA) approach

that makes it compatible to run on any platform.

9 | P a g e

PHP

 is an open-source, server-side scripting language used to develop the back-end logic

of an application. It is a powerful tool for making dynamic and interactive websites.

Ruby

 A dynamic, open source, object orinted programming language with a focus on

simplicity and productivity. It has an elegant syntax that is natural to read and easy to

write

Perl

 Perl is a general-purpose programming language originally developed for text

manipulation and now used for a wide range of tasks including system

administration, web development, network programming, GUI development, and

more

NodeJS

 is an open-source, JavaScript framework used specifically for creating the back end

or the server-side of an application. Through NodeJS, JavaScript can now finally run

on the server-side of the web.

03. Data and Database

The data layer is a massive warehouse of information. It contains a database repository

which captures and stores information from the front-end, through the back-end. A

prerequisite is to have knowledge of how data is stored, edited, retrieved, etc. An

understanding of Databases such as MySQL, MongoDB is a must.

MySQL is an open-source, Relational Database Management System that provides multi-

user access and supports multi storage engines.

10 | P a g e

MongoDB is known for its ease of use and its quickness in handling a large amount of

data. It is an open-source, object-oriented, NoSQL database which is highly scalable and is

efficient in handling unstructured data.

Server and Deployment

Servers are basically computers that store website files and other resources like databases.

Server Setup

To make a website accessible publicly on the internet, it needs to be installed on a server.

Once you have your domain name and server space, it’s time to set up the site on the

server. The first thing is to direct the domain name to the server’s unique IP address. Then

you need to set up website files and finally the database and other configurations.

02. Introduction to HTML

 HTML stands for Hyper Text Markup Language

 HTML is the standard markup language for creating Web pages

 HTML describes the structure of a Web page

 HTML consists of a series of elements

 HTML elements tell the browser how to display the content

 HTML elements label pieces of content such as "this is a heading", "this is a

paragraph", "this is a link", etc.

HTML was created by Sir Tim Berners-Lee in late 1991. HTML is a very evolving markup

language and has evolved with various versions updating. Long before its revised

standards and specifications are carried in, each version has allowed its user to create web

pages in a much easier and prettier way and make sites very efficient.

 HTML 1.0 was released in 1993 with the intention of sharing information that can be

readable and accessible via web browsers. But not many of the developers were

involved in creating websites. So the language was also not growing.

 Then comes the HTML 2.0, published in 1995, which contains all the features of

HTML 1.0 along with that few additional features, which remained as the standard

markup language for designing and creating websites until January 1997 and refined

various core features of HTML.

 Then comes the HTML 3.0, where Dave Raggett who introduced a fresh paper or

draft on HTML. It included improved new features of HTML, giving more powerful

characteristics for webmasters in designing web pages. But these powerful features

of new HTML slowed down the browser in applying further improvements.

11 | P a g e

 Then comes HTML 4.01, which is widely used and was a successful version of

HTML before HTML 5.0, which is currently released and used worldwide. HTML 5

can be said for an extended version of HTML 4.01, which was published in the year

2012.

A Simple HTML Document

<!DOCTYPE html>

<html>

<head>

 <title>Page Title</title>

</head>

<body>

 <h1>My First Heading</h1>

 <p>My first paragraph.</p>

</body>

</html>

Example Explained

 The <!DOCTYPE html> declaration defines that this document is an HTML5

document

 The <html> element is the root element of an HTML page

 The <head> element contains meta information about the HTML page

 The <title> element specifies a title for the HTML page (which is shown in the

browser's title bar or in the page's tab)

 The <body> element defines the document's body, and is a container for all the

visible contents, such as headings, paragraphs, images, hyperlinks, tables, lists, etc.

 The <h1> element defines a large heading

 The <p> element defines a paragraph

What is an HTML Element?

An HTML element is defined by a start tag, some content, and an end tag

<tagname>Content goes here...</tagname>

The HTML element is everything from the start tag to the end tag

<h1>My First Heading</h1>

<p>My first paragraph.</p>

12 | P a g e

Note: Some HTML elements have no content (like the
 element). These

elements are called empty elements. Empty elements do not have an end tag!

What is an HTML Attributes

 All HTML elements can have attributes

 Attributes provide additional information about elements

 Attributes are always specified in the start tag

 Attributes usually come in name/value pairs like: name="value"

Example : The href Attribute

The <a> tag defines a hyperlink. The href attribute specifies the URL of the page the link

goes to

Correct way

HTML Tutorial

Wrong way

 HTML Tutorial

Chapter Summary

 All HTML elements can have attributes
 The href attribute of <a> specifies the URL of the page the link goes to
 The src attribute of specifies the path to the image to be displayed
 The width and height attributes of provide size information for images
 The alt attribute of provides an alternate text for an image
 The style attribute is used to add styles to an element, such as color, font, size, and

more
 The lang attribute of the <html> tag declares the language of the Web page
 The title attribute defines some extra information about an element

HTML Headings

HTML headings are titles or subtitles that you want to display on a webpage.

HTML headings are defined with the <h1> to <h6> tags.

<h1> defines the most important heading. <h6> defines the least important heading.

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<h3>Heading 3</h3>

<h4>Heading 4</h4>

<h5>Heading 5</h5>

<h6>Heading 6</h6>

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

13 | P a g e

HTML Paragraphs

The HTML <p> element defines a paragraph.

A paragraph always starts on a new line, and browsers automatically add some white

space (a margin) before and after a paragraph.

A paragraph always starts on a new line, and is usually a block of text.

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

You cannot be sure how HTML will be displayed.

Large or small screens, and resized windows will create different results.

With HTML, you cannot change the display by adding extra spaces or extra lines in your

HTML code. The browser will automatically remove any extra spaces and lines when the

page is displayed.

HTML Horizontal Rules

The <hr> tag defines a thematic break in an HTML page, and is most often displayed as a

horizontal rule. The <hr> element is used to separate content (or define a change) in an

HTML page

<h1>This is heading 1</h1>

<p>This is some text.</p>

<hr>

<h2>This is heading 2</h2>

<p>This is some other text.</p>

<hr>

HTML Tag

The tag is used to embed an image in an HTML page.

Images are not technically inserted into a web page; images are linked to web pages. The

 tag creates a holding space for the referenced image.

The tag has two required attributes:

 src - Specifies the path to the image

 alt - Specifies an alternate text for the image, if the image for some reason cannot be

displayed

This is heading
This is some text

This is heading

This is some text

14 | P a g e

Note: Also, always specify the width and height of an image. If width and height are not

specified, the page might flicker while the image loads.

Attribute Value Description

alt text Specifies an alternate text for an image

crossorigin
anonymous
use-credentials

Allow images from third-party sites that allow
cross-origin access to be used with canvas

height pixels Specifies the height of an image

ismap ismap
Specifies an image as a server-side image
map

loading

eager
lazy

Specifies whether a browser should load an
image immediately or to defer loading of
images until some conditions are met

longdesc URL
Specifies a URL to a detailed description of an
image

referrerpolicy

no-referrer
no-referrer-when-
downgrade
origin
origin-when-cross-origin
unsafe-url

Specifies which referrer to use when fetching
the image

sizes sizes Specifies image sizes for different page layouts

src URL Specifies the path to the image

srcset URL-list
Specifies a list of image files to use in different
situations

usemap #mapname Specifies an image as a client-side image map

width pixels Specifies the width of an image

https://www.w3schools.com/tags/att_img_alt.asp
https://www.w3schools.com/tags/att_img_height.asp
https://www.w3schools.com/tags/att_img_ismap.asp
https://www.w3schools.com/tags/att_img_loading.asp
https://www.w3schools.com/tags/att_img_longdesc.asp
https://www.w3schools.com/tags/att_img_src.asp
https://www.w3schools.com/tags/att_img_usemap.asp
https://www.w3schools.com/tags/att_img_width.asp

15 | P a g e

HTML <picture> Tag

The srcset attribute specifies the URL of the image to use in different situations.

This attribute is required when <source> is used in <picture>.

<picture>
 <source media="(min-width:650px)" srcset="img_pink_flowers.jpg">
 <source media="(min-width:465px)" srcset="img_white_flower.jpg">

</picture>

16 | P a g e

HTML <a> Tag

The <a> tag defines a hyperlink, which is used to link from one page to another.

The most important attribute of the <a> element is the href attribute, which indicates the
link's destination.

Visit iba.lk

By default, links will appear as follows in all browsers:

 An unvisited link is underlined and blue

 A visited link is underlined and purple

 An active link is underlined and red

Attribute Value Description

download filename
Specifies that the target
will be downloaded when a
user clicks on the hyperlink

href URL
Specifies the URL of the
page the link goes to

hreflang language_code
Specifies the language of
the linked document

media media_query
Specifies what
media/device the linked
document is optimized for

ping list_of_URLs

Specifies a space-
separated list of URLs to
which, when the link is
followed, post requests
with the body ping will be
sent by the browser (in the
background). Typically
used for tracking.

referrerpolicy

no-referrer
no-referrer-when-downgrade
origin
origin-when-cross-origin
same-origin
strict-origin-when-cross-origin
unsafe-url

Specifies which referrer
information to send with
the link

rel

alternate
author / bookmark / external
help / license / next / nofollow
noreferrer / noopener / prev / search / tag

Specifies the relationship
between the current
document and the linked
document

target

_blank
_parent
_self
_top

Specifies where to open
the linked document

type media_type
Specifies the media type of
the linked document

https://www.w3schools.com/tags/att_a_download.asp
https://www.w3schools.com/tags/att_a_href.asp
https://www.w3schools.com/tags/att_a_hreflang.asp
https://www.w3schools.com/tags/att_a_media.asp
https://www.w3schools.com/tags/att_a_ping.asp
https://www.w3schools.com/tags/att_a_referrepolicy.asp
https://www.w3schools.com/tags/att_a_rel.asp
https://www.w3schools.com/tags/att_a_target.asp
https://www.w3schools.com/tags/att_a_type.asp

17 | P a g e

Exercise 01

I. Write html tags used in this web page

II. Create this web page using html tags

Exercise 02

I. Write html tags used in this web page

II. Create this web page using html tags

<!DOCTYPE html> - 1.html

<html>

<body>

<h1>I'M A WEB PAGE</h1>

<p>This text contain a
link that target another page</p>

</body>

</html>

<!DOCTYPE html> - 2.html

<html>

<body>

<h1>I'M ALSO A WEB PAGE</h1>

<p>But this text does not have any links</p>

</body>

</html>

18 | P a g e

Exercise 03

I. Write html tags used in this web page

II. Create this web page using html tags

N.B Banner image should be responsive

Exercise 04

I. draw webpage display by fallowing html tags

19 | P a g e

Exercise 05

I. Write html codes to design this page

20 | P a g e

HTML Structure and Comment Elements

TAG (start...stop) Attributes Explanation

<HTML>...</HTML>

Identifies the file as containing HTML; only HEAD, BODY,
and comment elements should go inside the HTML start
and stop tags.

Version="stri
ng"

Where string identifies the version of HTML; for example:
<HTML Version="-//IETF//DTD HTML 3.2//EN">

<!--- string -->

Comments that browsers shouldn't display (string) can be
included between these tags.

The HEAD and Related Elements

TAG (start...stop) Attributes Explanation

<HEAD>...</HEAD>

brackets a set of unordered descriptive
information about a document. Elements within
the HEAD element include: TITLE, BASE,
ISINDEX, STYLE, SCRIPT, LINK, META, and
NEXTID

<TITLE> string </TIT
LE>

a string identifying the contents of the document;
may not contain anchors, paragraph elements, or
highlighting; every HTML must have one TITLE
element.

<BASE>...</BASE>

used to record the URL of the original version of a
document; useful for when the source file is
transported elsewhere

Href="URL" defines base URL of the document;

<ISINDEX>

marks the document as searchable--the server on
which the document is located must have a
search engine defined that supports this
searching.

<STYLE>

a way for the author of a document to define
rendering information which will work with style
sheets.

<SCRIPT>

reserved for future use with scripting languages.

<LINK>

used to define a relationship between the
document and other objects or documents.

Href="URL
this identifies the document or part of a document
to which this link refers.

Name="rel|rev"
this is a way to name this LINK as a possible
destination for another hypertext document;

Rel="made|..."

describes the relationship defined by this LINK,
according to the possible relationships as defined
by
https://www.w3.org/hypertext/WWW/MarkUp/Rela
tionships.html. For example, the value "made"
indicates authorship.

Rev="made|..."
similar to rel, above, but the rev attribute indicates
the reverse relationship as Rel. For Example, the
LINK with Rel="made" indicates that the Href

21 | P a g e

attribute indicates the URL given in the Href is the
author of the current document. Using the
Rev="made" link indicates that the current
document is the author of the URL given in the
Href attribute.

Urn="string"

indicates the Uniform Resource Name of the
document; the specification for URN and other
addressing is still in development
(https://www.w3.org/hypertext/WWW/Addressing/
Addressing.html).

Title="string"

this attribute is not to be used as a substitute for
the TITLE attribute of the document itself, but as
a title for the document given by the Href attribute
of the LINK element. This attribute is rarely used
or supported by browsers, but may have value for
cross referencing the relationships the LINK
element defines.

Methods="..."

describes the HTTP methods the object referred
to by the Href of the LINK element supports. For
example, one method is searching; a browser
could thus use this Methods attribute to give
information to the user about the document
defined by the LINK element.

<META>

used to identify meta-information (information
about information) in the document. This element
is not meant to take the place of elements which
already have a specific purpose.

Http-equiv="..."
This attribute connects this META element to a
particular protocol response which is generated
by the HTTP server hosting the document.

Http-equiv="refresh"
Content="n"

browser will reload the currently displayed page
after n seconds.

Http-equiv="refresh"
Content="n; Url=URL"

browser will load the document at URL after
displaying the currently displayed page
for n seconds.

Http-equiv="expires"
Content="string-date"

an expiry date for files that are periodically
updated. string-date could be, for example, "17-
Jan-1999 15:00:00 GMT"

Name="string"

This attribute is a name for the information in the
document--not the title of the document (which
should be defined in the TITLE element) but a
"meta name" classifying this information.

Content="string"
A "meta name" for the content associated with the
given name (defined by the Name attribute) or the
response defined in Http-equiv.

<NEXTID>

This element is used by text generated software
in creating identifiers;

N="string"

used to define the next identifier to be allocated
by the text generator program. Normally, human
writers of HTML don't use this element; and Web
browsers ignore this element.

The BODY and Related Elements

TAG (start...stop) Attributes Explanation

22 | P a g e

<BODY></BODY>

delimit the content
of an HTML
document

Background = "URL"

the URL of the
graphic that will be
tiled as the
background of the
page

BGColor="color"
the color of the
background of the
page;

Text="color"
the color of the
document's text.

Link="color"
the color of the
document's
hotspots

VLink="color"
the color of the
document's visited
links

ALink="color"

the color of the
document's
hotspots during
user selection

<A>...

the anchor element
which is used as the
basis for linking
documents
together.

Href="URL"

this attribute
identifies the URL of
the hypertext
reference for this
anchor in the form
Href="URL", where
the URL given will
be the resource
which the browser
retrieves when the
user clicks on the
anchor's hotspot.

Name="string"

this attribute creates
a name for an
anchor; this name
can then be used
within the document
or outside of the
document in anchor
to refer to the
portion of text
identified by the
name.

Title="string"

this attribute is for
the title of the
document given by
the Href attribute of
the anchor. A

23 | P a g e

browser could use
this information to
display this title
before retrieving it,
or to provide a title
for the Href
document when it is
retrieved (e.g., if the
document is at a
FTP site, it will not
have a title defined).

Rel="made|..."

Defines the
relationship defined
from the current
document to the
target (Href
document). See the
discussion of the
Rel attribute in the
LINK element,
above.

Rev="made|..."

Defines the
relationship defined
from the target (Href
document) to the
current document.
See the discussion
of the Rev attribute
in the LINK
element, above.

Urn="string"

This indicates the
Uniform Resource
Name of the target
(Href) document;
the specification for
URN and other
addressing is still in
development.

Methods="..."

Provides
information about
the functions the
user can perform on
the Href object.
Similar to described
above for the Title
attribute, this
information might
be useful for the
browser to display
in advance.

Character blocks: elements that "chunk" text in lists or blocks

<DIV>...</DIV>

used to define a
block or paragraph
of text;

24 | P a g e

Align="left|right"

aligns the block or
paragraph of text

<BLOCKQUOTE>...</BLOCKQUOTE>

<PRE>...</PRE>

sets up a block of
text which will be
presented in a
fixed-width font,
with spaces as
significant.

<BLOCKQUOTE>...</BLOCKQUOTE>

brackets text that is
an extended
quotation from
another source.

...
...
<MENU>...</MENU>
<DIR>...</DIR>

Lists for information;
all use the LI
element to identifiy
the elements.
UL brackets an
unordered list of
items;
OL brackets an
ordered list of items;
MENU brackets an
unordered list of
items;
DIR brackets a list
of items which are
at most 20
characters wide;

Compact
makes the list
compact

Type="disc|circle|square"
defines the bullet
type for a UL list;

Type="1|a|A|i|I"

defines the bullet
type for a OL list; 1
(arabic numbers: 1,
2, 3, ...); a (lower
alpha: a, b, c, ...) A
(upper alpha: A, B,
C, ...) i (lower
roman: i, ii, iii, ...) I
(upper roman: I, II,
III, ...)

Start="N"
starts the OL list off
with a sequence
starting at N.

identifies a list
element in UL, OL,
MENU, DIR.

<DL>...</DL>

A definition list, or
glossary; uses DT
to identify terms and
DD to identify
definitions.

25 | P a g e

Compact
makes the list
compact.

<DT>

identifies term in
definition list (DL).

<DD>

identies description
in definition list
(DL).

<ADDRESS>...</ADDRESS>

ownership or
authorship
information,
typically at the start
or end of a
document.

Headers

<H1>...</H1>

Level 1 Header

<H2>...</H2>

Level 2 Header

<H3>...</H3>

Level 3 Header

<H4>...</H4>

Level 4 Header

<H5>...</H5>

Level 5 Header

<H6>...</H6>

Level 6 Header

Separators

<HR>...</HR>

creates a horizontal
rule.

Size="n"

this attribute
identifies the
thickness of the
line.

Noshade
this attribute turns
off shading to
create a solid bar.

Width="n| n%"

this attribute
identifies the width
of the line, either
expressed as width
in pixels, or a
relative with as a
percent of the
current display
width (not page
width). These lines
are by default
centered (default
can be overridden
with the Align
attribute).

26 | P a g e

Align="left| right| center"

specifies the
alignment of
horizontal lines that
are less than the full
width of the page.

<P>

identifies start of
paragraph; the stop
tag </P> is optional.

Align="center|right|left" aligns a paragraph;

Spacing

forces a linebreak.
Typically, this is
used to represent
postal addresses or
text; where
linebreaks are
significant.

Alignment

<CENTER>string</CENTER>

centers text.

Images

...

places graphic
image in a
document at the
location of the
element tag (an
"inline image").

Src="URL"
identifies the source
file of the image.

Alt="string"

a string of
characters can be
defined that will be
displayed in non-
graphical browsers.
Non-graphical
browsers otherwise
ignore the IMG
element.

Align="top|middle|bottom|left|right"

sets the positioning
relationship
between the graphic
and the text that
follows it; values
include:
top: the text
following the
graphic should be
aligned with the top
of the graphic.
middle: the text
following the

27 | P a g e

graphic should be
aligned with the
middle of the
graphic.
bottom: the text
following the
graphic should be
aligned with the
bottom of the
graphic.
left: the image is
pushed to the left
margin of the page.
right: the image is
pushed to the right
margin of the page.

Width="n"
defines the width of
the image.

Height="n"
defines the height of
the image.

Border="n"
defines the border
above and below
the image.

Vspace="n"
defines the vertical
space around the
image.

Hspace="n"

defines the
horizontal space to
the left and right of
the image.

Ismap

this attribute
identifies the image
as an image map,
where regions of
the graphic are
mapped to defined
URLs. Hooking up
these relationships
requires knowledge
of setting an image
map file on the
server to define
these connections.

Usemap="string"

identifies which
MAP element, as
defined in the Name
attribute, that you
are using for a
client-side image
map.

<MAP>...</MAP>

define client-side
image maps

Name="string"

string is the name
you use as the
value of the
Usemap attribute of

28 | P a g e

the corresponding
IMG element.

<AREA>...</AREA>

defines
correspondence
between pixels and
URLs in client side
image map element
MAP used in
conjunction with
IMG

Shape="rect|poly|circle"

Sets the shape of
the hotspot in the
image

Shape="rect"
Coords="left,top,right,bottom"

Sets the perimeter
x-y coordinates of a
rectangle

Shape="poly"
Coords="x1,y1,x2,y2,...xn,yn""

Sets the border
coordinates of a
polygon

Shape="circle" Coords="x,y,r"

Sets the center (x,
y) and radius (r) of a
circle

Href="URL"

Defines the URL
associated with this
AREA

Nohref

Defines this AREA
as a "deadspot,"
with not URL
associated with it

<FIG>...</FIG>

define a figure

Src="URL"

defines the source
of the figure

Character Formatting

TAG (start...stop) Attributes Explanation

<CITE>string</CITE>

delimits a citation.

<CODE>string</CODE>

delimits computer
language source
code.

string

delimits
emphasized text.

<KBD>string</KBD>

delimits text that is
intended to be
entered as a
keyboard entry.

<SAMP>string</SAMP>

delimits text that
should be rendered
"as is."

string

delimits text with a
strong emphasis.

29 | P a g e

<VAR>string</VAR>

delimits a variable
name.

<DFN>string</DFN>

delimits the defining
instance of an item.

<Q>string</Q>

delimits a short
quote.

<LANG>string</LANG>

the human
language currently
defined.

<AU>string</AU>

the name of an
author.

<PERSON>string</PERSON>

the name of a
human.

<ACRONYM>string</ACRONYM>

an acronym in the
document.

<INS>string</INS>

inserted text (when
documents are
amended).

string

deleted text (when
documents are
amended).

string

delimits bold text.

<I>string</I>

delimits italics text.

<TT>string</TT>

delimits typewriter
font text.

<U>string</U>

delimits underlined
text.

<BIG>string</BIG>

big print relative to
current font.

<SMALL>string</SMALL>

small print relative
to current font.

_{string}

a subscript.

^{string}

a superscript.

<BASEFONT>...</BASEFONT>

changes the current
font.

Size="n"
specifies the font
size in the range 1-
7.

Size="+|-n"

specifies font size
relative to the
current base font
size

Color="color"

specifies the font
color; either RGB
hexadecimal value
or color name (see
BODY attribute
BGColor).

30 | P a g e

 string </BASEFONT>

changes the font
for string.

Size="n"
specifies the font
size in the range 1-
7.

Size="+|-n"

specifies font size
relative to the
current base font
size

Color="color"

specifies the font
color; either RGB
hexadecimal value
or color name (see
BODY attribute
BGColor).

FORM Elements

TAG (start...stop) Attributes Explanation

<FORM>...</FORM>

delimits the content
of a FORM.

Action="URL"

this attribute
identifies the URL of
the program or
script which accepts
the contents of the
form for processing.
If this attribute is
absent, the BASE
URI of the Form is
used.

Method="get|post"

this attribute this
attribute indicates
the variation in the
Froms-handling
protocol which will
be used in
processing the
Action program or
script.

Encytpe="string"

this attribute
identifies the media
type (See
RFC1590) that will
be used for
encoding the
name/value pairs of
the Form's data.
This is needed for
when the protocol
identified in Method
does not have its
own format. The
default encoding for
all Forms is

31 | P a g e

application/x-www-
form-urlencoded.

<INPUT>...</INPUT>

used for collecting
information from the
user.

Align="top|middle|bottom"

this attribute is used
used only with the
image Type (see list
below). Possible
values are "top,"
"middle," and
"bottom," and define
the relationship of
the image to the
text following it.

Checked

this attribute causes
the initial state of a
checkbox or radio
button to be
"selected." Without
this attribute, the
initial state is
unselected.

Maxlength="n"

his attribute sets a
maximum number
of characters that a
user can enter in a
text a field. The
default value of this
is unlimited.

Name="string

this attribute
identifies the
symbolic name that
is used in
transferring and
identifying the
output from this
element of the
Form.

Size="n"

this attribute
specifies the field
width as displayed
to the user. If Size
is less than
Maxlength, the text
field is scrollable.

Src="URL"

this attribute the
source file for the
image used with the
attribute Type is set
to "image."

Type="checkbox| hidden| image|
password| radio| reset| submit| text"

this attribute
identifies the type of
the input field:
checkbox: This is
used for gathering

32 | P a g e

data that can have
multiple values at a
time.
hidden: This is for
values that are set
by the form without
input from the user.
image: An image
field be used to
submit the Form:
when the user clicks
on the image, the
Form is submitted,
and the x and y
coordinates of the
click location are
transmitted with the
name/value pairs.
password: This is a
field in which the
user enters text, but
the text is not
displayed (could
appear as stars).
radio: Used to
collect information
where there is one
and only one
possible value from
a set of alternatives.
The Checked
attribute can set the
initial value of this
element.
reset: This is used
to reset and clear
the Form to its
default values. The
Value attribute sets
the string displayed
to the user for this
element.
submit: This button
is used to submit
the Form. The
Value attribute sets
the string displayed
to the user for this
element.
text: This is used for
a single line of text;
this uses the Size
and Maxlength
attributes. For
multiple lines, use
TEXTAREA
(below).

33 | P a g e

Text

this attribute
identifies the input
as a single line text-
entry area.

Value="string"

this attribute sets
the initial displayed
value of the field or
the value of the field
when it is selected
(the radio button
type must have this
attribute set).

<SELECT>...</SELECT>

used for presenting
a user with a choice
of a set of
alternatives. The
OPTION element is
used to define each
alternative.

Name="string"

identifies the logical
name that will be
submitted and
associated with the
data as a result of
the user choosing
select.

Multiple

By default, the user
can only make one
selection from the
group in the
SELECT element.
By using the
Multiple attribute,
the user may select
one or more of the
OPTIONs.

Size="n"

specifies the
number of visible
items. If this is more
than one, the visual
display will be a list.

<OPTION>...</OPTION>

occurs only within
the SELECT
element (above)
and is used to
represent each
choice of the
SELECT.

Selected
indicates that this
option is initially
selected.

Value="n"

If present, this is the
value that will be
returned by the
SELECT if this
option is chosen;
otherwise, the value

34 | P a g e

returned is that set
by the OPTION
element.

<TEXTAREA>...</TEXTAREA>

used to collect
multiple lines of text
from the user; the
user is presented
with a scrollable
pane in which text
can be written.

Name="string"

identifies the logical
name that will be
associated with the
returned text.

Rows="n"

the number of rows
of text that will be
displayed (the user
can use more rows
and scroll down to
them).

Cols="n"

the number of
columns of text that
will be displayed
(the user can use
more columns and
scroll to the right to
them).

TABLE and Related Elements

TAG (start...stop) Attributes Explanation

<TABLE>...</TABLE>

delimits the content
of a TABLE.

Align="bleedleft| left| center| right|
bleedright| justify "

the horizontal
alignment of the
table on the screen
(not the contents of
the table). Possible
values are:
bleedleft: aligned at
the left window
border
left: at the left text
margin
center: centered
between text
margins
right: at the right
text margin
bleedright: aligned
at the right window
border
justify: table should
fill space between
text margins

35 | P a g e

Border

this attribute causes
browser to render a
border around the
table; if missing, the
table has no grid
around it or its data.

Border="n"

specifies the
thickness of the
table border in
pixels.

Cellspacing="n"
specifies the space
around data cells in
pixels.

Cellpadding="n"
specifies the space
data in the cells in
pixels.

Width="n"

this attribute
specifies how wide
the table will be; if
given as "N%", the
width is N% of the
width of the display.

Id="string"

a document-wide
identifier for naming
positions in the
document as
distinations for a
hypertext link.

Class = "string"
A list of names that
may be used by
style sheets.

Lang = "string"

the natural (human)
language used by
the content of the
table.

Dir="ltr|rtl|"

identifies the layout
of rows--such as
column 1 is on the
right (Dir="rtl") or
left (Dir="ltr"). Used
for languages that
have different
directionality in
reading (not left to
right, top to bottom).

Align="left|center|right|justify|char"

the horizontal
alignment of cell
contents; justify is
left; char is for
aligning on a
character

Char="c"

specifies the
alignment character
for use with
Align="char";

36 | P a g e

Charoff="n"
the offset of the
alignment character
on each line.

Valign="top|middle|bottom|baseline"
alignment of cell
contents

Cols="n"

the number of
columns in the
table; if present, the
browser can render
the table as the
data is received;

Frame="(void| above| below|
hsides| lhs| rhs| vsides| box| border"

which sides of the
frame to render
(void = none).

Rules="(none | groups | rows | cols
| all")

where to draw the
rules in the table
interior.

<TR>...</TR>

contains the
elements in each
table row.

<TH>string</TH> <TH>string</TH>

TH used to identify
a heading in the
table; TD used to
identify data in the
table.

Align="left| center| right| justify|
decimal"

this attribute
identifies horizontal
alignment of the
items in a table row.

Valign="top | middle | bottom|
baseline"

this attribute
identifies the
vertical alignment of
the items in a table
cell.

Colspan="n"

this attribute
identifies the
number of columns
the cell spans.

Rowspan="n"

this attribute
identifies the
number of rows the
cell spans.

Nowrap

this attribute
prevents the
browser from
wrapping the
contents of the cell.

<CAPTION>string</CAPTION>

used to label a table
or figure.

Align="top| bottom| left| right"

this attribute
identifies the
position of the
caption relative to
the table or figure.

Netscape Extension Elements

37 | P a g e

TAG (start...stop) Attributes Explanation

<ISINDEX>...</ISINDEX> Prompt="string"
the message a user
sees for a
searchable index.

<BLINK>string</BLINK>

creates blinking
text.

 in Type="disc|circle|square"
changes shape of
individual items in
UL element

 in Type="A|a|I|i|1"

changes shape of
individual items in
OL element; A =
capital letters; a =
small letters; I =
capital roman
numerals; 1 =
numbers (default)

<LI Value="n"> in Value="n"
changes value of
item in OL element;

...

additions to the IMG
element.

Align="left| right| top| texttop|
middle| absmiddle| baseline|
bottom| absbottom"

specifies the
placement of an
image relative to the
text following it.

Frames Elements (Netscape and Microsoft support)

TAG (start...stop) Attributes Explanation

<FRAMESET> ... </FRAMESET>

container for frame
elements; used
instead of a body in
a document

Rows="string,string,..string"

comma-separated
list of values
indicating the height
of each of the rows.
If a number, the row
is that high in pixels;
If a number followed
by a %, the row
gets that percent of
the total window
height; If a *, the
row gets the
remaining room; If a
number followed by
a *, that row gets
that much more
share of the height;

Cols="string,string,..string"

comma-separated
list of values
indicating the height
of each of the

38 | P a g e

columns. The
values are the same
syntax as for the
Rows attribute.

<FRAME> ... </FRAME>

this element
identifies a single
frame in a frameset

Src="URL"

The url refers to the
resource to be
initially displayed in
this frame.

Name="string"

assigns a name to
the frame; this
name then can be
used in other
documents in the
Target attribute of
the anchor element.

Marginwidth="n"

The number of
pixels to add to the
left and right of the
contents of frame
the frame.

Marginheight="value"

The number of
pixels to add to the
top and bottom of
the contents of
frame the frame.

Scrolling="yes|no|auto"

yes = add
scrollbars, even if
they are not
needed; no =
NEVER add
scrollbars even if
they are needed;
auto = add
scrollbars if they are
needed; (default)

Noresize

a flag that indicates
the frame is not
resizable by the
user; Normally, a
user can manually
alter the size of the
frame using "grab
buttons" that appear
on the display of the
frame. The
Noresize attribute
makes this resizing
impossible.

<NOFRAMES> ... </NOFRAMES>

this element
brackets content
that will be rendered
by non-frame-
enabled browsers.

39 | P a g e

<A> Target="string"

lets you define in
which frame the
new content
referenced in the
anchor will be
displayed when
selected. Target
has the possible
values: name: a
frame named in a
FRAME element's
Name attribute;
_self: new
document is
displayed the in
same frame as the
anchor that loads it;
this is the default;
_parent: displays
the new document
in the parent frame;
if no parent, same
as _self; _top:
displays the new
document in the
entire window; if no
frames, same as
_self; _blank:
display the new
document in a new,
unnamed window;

<BASE> Target="string"

lets you set the
default target for
every hypertext link
in the document. Its
possible values are
the same as for the
Target attribute of
the A element.

Microsoft Internet Explorer Extension Elements

TAG (start...stop) Attributes Explanation

<MARQUEE> ... </MARQUEE>

creates a scrolling
text marquee

Align="top|bottom|middle"
alignment of
marquee

Behavior="scroll|slide|alternate"

(scroll = continous
movement; slide =
display once and
then sit there;
alternate = slide in
and reverse out)

Direction="left|right" scroll direction

40 | P a g e

Loop="n"
how many times to
scroll

Scrollamount="n"
scrollrate in
pixels/time

Scrolldelay="n"
milleseconds
between scroll
movements

BGColor="color"
color of background
behind text

Width="n"
width in pixels of
marquee

Height="n"
height in pixels of
marquee

Hspace="n"
pixels to leave as
buffer left and right
of marquee

Vspace="n"
pixels to leave as
buffer above and
below marquee

<BGSOUND> ... </BGSOUND>

plays a soundtrack
when the document
is displayed

Src="URL" url of sound file

Loop="n"
number of times to
replay file"

new attributes for IMG element

Dynsrc="URL"
URL of the AVI
movie

Controls

when present, it
adds "VCR-like"
controls to the
movie image.

Loop="n"
number of times to
play the movie

Start="mouseover|fileopen"
when movie begins
to play, fileopen is
default.

<BODY>

new attributes for
the BODY element

BGProperties="fixed"

if present, this
freezes the
background image
defined in
Background to the
browser window so
that it does not
scroll with the text.

Topmargin="n"
pixels of buffer at
top of page in
browser window

41 | P a g e

Leftmargin="n"
pixels of buffer at
the left of page in
browser window

<TABLE> BGColor="color"
specifies the
background color of
the entire table

<TR> BGColor="color"
specifies the
background color of
the table row

<TH> BGColor="color"
specifies the
background color of
the table header

<TD> BGColor="color"
specifies the
background color of
the table data

Introduction to CSS

 CSS stands for Cascading Style Sheets

 CSS describes how HTML elements are to be displayed on screen, paper, or in

other media

 CSS saves a lot of work. It can control the layout of multiple web pages all at once

 External stylesheets are stored in CSS files

42 | P a g e

Why Use CSS?

CSS is used to define styles for your web pages, including the design, layout and variations

in display for different devices and screen sizes.

body {

 background-color: lightblue;

}

h1 {

 color: white;

 text-align: center;

}

p {

 font-family: verdana;

 font-size: 20px;

}

CSS Syntax

A CSS rule-set consists of a selector and a declaration block:

The selector points to the HTML element you want to style.

The declaration block contains one or more declarations separated by semicolons.

Each declaration includes a CSS property name and a value, separated by a colon.

Multiple CSS declarations are separated with semicolons, and declaration blocks are
surrounded by curly braces.

p {
 color: red;
 text-align: center;
}

 p : is a selector in CSS (it points to the HTML element you want to style: <p>).

 color : is a property, and red is the property value

 text-align : is a property, and center is the property value

CSS Selectors

HTML was NEVER intended to contain tags for
formatting a web page!

HTML was created to describe the content of a
web page, like:

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

When tags like , and color attributes were
added to the HTML 3.2 specification, it started a
nightmare for web developers. Development of
large websites, where fonts and color information
were added to every single page, became a long
and expensive process.

To solve this problem, the World Wide Web

Consortium (W3C) created CSS.

CSS removed the style formatting from the HTML

page!

43 | P a g e

CSS selectors are used to "find" (or select) the HTML elements you want to style.

We can divide CSS selectors into five categories:

 Simple selectors (select elements based on name, id, class)

 Combinator selectors (select elements based on a specific relationship between
them)

 Pseudo-class selectors (select elements based on a certain state)

 Pseudo-elements selectors (select and style a part of an element)

 Attribute selectors (select elements based on an attribute or attribute value)

The CSS element Selector

The element selector selects HTML elements based on the element name.

Here, all <p> elements on the page will be center-aligned, with a red text color:

p {

 text-align: center;

 color: red;

}

The CSS id Selector

The id selector uses the id attribute of an HTML element to select a specific element.

The id of an element is unique within a page, so the id selector is used to select one unique
element! To select an element with a specific id, write a hash (#) character, followed by the
id of the element.

The CSS rule below will be applied to the HTML element with id="para1":

#para1 {

 text-align: center;

 color: red;

}

Note: An id name cannot start with a number!

The CSS class Selector

The class selector selects HTML elements with a specific class attribute.

To select elements with a specific class, write a period (.) character, followed by the class
name. In this example all HTML elements with class="center" will be red and center-
aligned:

.center {

 text-align: center;

 color: red;

}

You can also specify that only specific HTML elements should be affected by a class.

In this example only <p> elements with class="center" will be center-aligned:

p.center {

 text-align: center;

 color: red;

}

44 | P a g e

The CSS Universal Selector

The universal selector (*) selects all HTML elements on the page.

The CSS rule below will affect every HTML element on the page:

* {

 text-align: center;

 color: blue;

}

The CSS Grouping Selector

The grouping selector selects all the HTML elements with the same style definitions.

Look at the following CSS code (the h1, h2, and p elements have the same style
definitions):

h1 {

 text-align: center;

 color: red;

}

Three Ways to Insert CSS

There are three ways of inserting a style sheet:

 External CSS

 Internal CSS

 Inline CSS

External CSS

With an external style sheet, you can change the look of an entire website by changing just
one file!

Each HTML page must include a reference to the external style sheet file inside the <link>
element, inside the head section.

External styles are defined within the <link> element, inside the <head> section of an HTML
page:

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" href="mystyle.css">

</head>

<body>

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

Internal CSS

An internal style sheet may be used if one single HTML page has a unique style.

The internal style is defined inside the <style> element, inside the head section.

Internal styles are defined within the <style> element, inside the <head> section of an
HTML page:

An external style sheet can be
written in any text editor, and must
be saved with a .css extension.

The external .css file should not
contain any HTML tags.

Here is how the "mystyle.css" file
looks:

Note: Do not add a space between
the property value and the unit (such
as margin-left: 20 px;). The correct
way is: margin-left: 20px;

45 | P a g e

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background-color: linen;

}

h1 {

 color: maroon;

 margin-left: 40px;

}

</style>

</head>

The CSS Box Model

All HTML elements can be considered as boxes. In CSS, the term "box model" is used
when talking about design and layout.

The CSS box model is essentially a box that wraps around every HTML element. It consists
of: margins, borders, padding, and the actual content. The image below illustrates the box
model

Explanation of the different parts:

 Content - The content of the box, where text and images appear

 Padding - Clears an area around the content. The padding is transparent

 Border - A border that goes around the padding and content

 Margin - Clears an area outside the border. The margin is transparent

The box model allows us to add a border around elements, and to define space between
elements.

Inline CSS

An inline style may be used to apply a unique style
for a single element.
To use inline styles, add the style attribute to the
relevant element. The style attribute can contain
any CSS property.
Example
Inline styles are defined within the "style" attribute
of the relevant element:

<h1 style="color:blue;text-align:center;">This is a
heading </h1>
<p style="color:red;">This is a paragraph.</p>

46 | P a g e

Demonstration of the box model:

div {

 width: 300px;

 border: 15px solid green;

 padding: 50px;

 margin: 20px;

}

CSS Selectors Cheat Sheet for Developers

Selector Syntax Description Example

Universal
Selector

* Selects all the elements
* {color: pink;font-
size: 20px;}

Type
Selector

element{properties}
Selects elements based on
element type

p {color: pink;font-
size: 20px;}

Id Selector #id{properties}
Selects an element with a
specified id

#adbox {width:
80px;margin: 5px;}

Class
Selector

.class{properties}
Selects elements of the specified
CSS class

.dark {color: black;}

Attribute
Selectors

element[attribute]{properties}

Selects elements with the
specified attribute

input[disabled]
{background-color:
#fff;}

element[attribute="value"]

Selects elements with the
specified attribute equaling a
value

input[type=”text”]
{color: black;}

element[attribute~="value"]

Selects elements with the
specified attribute the value of
which contains a specific word.

h1[title~="Codota"]
{color: pink;font-size:
20px;}

element[attribute|="value"]

Selects elements with the
specified attribute and attribute
value with the attribute beginning
with specified value (or specified
value immediately followed by “-
“)

a[hreflang|="en"]
{ color: blue;}

element[attribute^="value"]

Selects elements with the
specified attribute with the
attribute value starting with
specified value

h2[title^="Codota"]
{color: black;font-
size: 20px;}

element[attribute$="value"]

Selects elements with the
specified attribute with the
attribute value ending with
specified value

h3[title$="Right
Now!"] {color:
red;font-size: 30px;}

element[attribute*="value"]

Selects elements with the
specified attribute where the
attribute value contains a
specified value

h4[title*="new"]
{color: red;font-size:
20px;}

https://www.w3.org/wiki/CSS3/Selectors/universal_selector
https://www.w3.org/wiki/CSS3/Selectors/universal_selector
https://www.w3.org/wiki/CSS3/Selectors/type_selector
https://www.w3.org/wiki/CSS3/Selectors/type_selector
http://w3.org/wiki/CSS3/Selectors/id_selector
https://www.w3.org/wiki/CSS3/Selectors/class_selector
https://www.w3.org/wiki/CSS3/Selectors/class_selector
https://www.w3.org/wiki/CSS3/Selectors#Attribute_Selector
https://www.w3.org/wiki/CSS3/Selectors#Attribute_Selector

47 | P a g e

Descendant
Combinator

element1
element2{properties}

Selects all specified child
descendant elements (element2)
under the parent element
(element1).

div p{color:pink;}

Child
Combinator

element1 >
element2{properties}

Selects all specified immediate
child elements (element2) under
the parent element (element1).

div > p{color:pink;}

Pseudo
Classes

element:link{properties} Selects unvisited link elements a:link{color:blue;}

element:visited{properties} Selects visited link elements a:visited{color:red;}

element:active{properties} Selects active link elements a:active{color:green;}

element:hover{properties}

Selects mouseover hover
elements

a:hover{color:purple;}

element:focus{properties} Selects in-focus elements a:focus{color:pink;}

CSS Properties Order by Category

The following section contains a complete list of standard properties belonging to the latest
CSS3 specifications. All the properties are listed alphabetically.

Property Description

align-content
Specifies the alignment of flexible container's items within the flex
container.

align-items Specifies the default alignment for items within the flex container.

align-self Specifies the alignment for selected items within the flex container.

animation Specifies the keyframe-based animations.

animation-delay Specifies when the animation will start.

animation-direction
Specifies whether the animation should play in reverse on alternate
cycles or not.

animation-duration
Specifies the number of seconds or milliseconds an animation should
take to complete one cycle.

animation-fill-mode
Specifies how a CSS animation should apply styles to its target before
and after it is executing.

animation-iteration-
count

Specifies the number of times an animation cycle should be played
before stopping.

animation-name
Specifies the name of @keyframes defined animations that should be
applied to the selected element.

https://www.w3.org/wiki/CSS3/Selectors/combinators/descendant
https://www.w3.org/wiki/CSS3/Selectors/combinators/descendant
https://www.w3.org/wiki/CSS3/Selectors/combinators/child
https://www.w3.org/wiki/CSS3/Selectors/combinators/child
https://www.w3.org/wiki/CSS3/Selectors#Pseudo-classes
https://www.w3.org/wiki/CSS3/Selectors#Pseudo-classes
https://www.tutorialrepublic.com/css-reference/css3-align-content-property.php
https://www.tutorialrepublic.com/css-reference/css3-align-items-property.php
https://www.tutorialrepublic.com/css-reference/css3-align-self-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-delay-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-direction-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-duration-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-fill-mode-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-iteration-count-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-iteration-count-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-name-property.php
https://www.tutorialrepublic.com/css-reference/css3-keyframes-rule.php

48 | P a g e

animation-play-state Specifies whether the animation is running or paused.

animation-timing-
function

Specifies how a CSS animation should progress over the duration of
each cycle.

backface-visibility
Specifies whether or not the "back" side of a transformed element is
visible when facing the user.

background Defines a variety of background properties within one declaration.

background-attachment Specify whether the background image is fixed in the viewport or scrolls.

background-clip Specifies the painting area of the background.

background-color Defines an element's background color.

background-image Defines an element's background image.

background-origin Specifies the positioning area of the background images.

background-position Defines the origin of a background image.

background-repeat Specify whether/how the background image is tiled.

background-size Specifies the size of the background images.

border Sets the width, style, and color for all four sides of an element's border.

border-bottom Sets the width, style, and color of the bottom border of an element.

border-bottom-color Sets the color of the bottom border of an element.

border-bottom-left-
radius

Defines the shape of the bottom-left border corner of an element.

border-bottom-right-
radius

Defines the shape of the bottom-right border corner of an element.

border-bottom-style Sets the style of the bottom border of an element.

border-bottom-width Sets the width of the bottom border of an element.

border-collapse Specifies whether table cell borders are connected or separated.

border-color Sets the color of the border on all the four sides of an element.

border-image Specifies how an image is to be used in place of the border styles.

border-image-outset
Specifies the amount by which the border image area extends beyond
the border box.

border-image-repeat
Specifies whether the image-border should be repeated, rounded or
stretched.

https://www.tutorialrepublic.com/css-reference/css3-animation-play-state-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-timing-function-property.php
https://www.tutorialrepublic.com/css-reference/css3-animation-timing-function-property.php
https://www.tutorialrepublic.com/css-reference/css3-backface-visibility-property.php
https://www.tutorialrepublic.com/css-reference/css-background-property.php
https://www.tutorialrepublic.com/css-reference/css-background-attachment-property.php
https://www.tutorialrepublic.com/css-reference/css3-background-clip-property.php
https://www.tutorialrepublic.com/css-reference/css-background-color-property.php
https://www.tutorialrepublic.com/css-reference/css-background-image-property.php
https://www.tutorialrepublic.com/css-reference/css3-background-origin-property.php
https://www.tutorialrepublic.com/css-reference/css-background-position-property.php
https://www.tutorialrepublic.com/css-reference/css-background-repeat-property.php
https://www.tutorialrepublic.com/css-reference/css3-background-size-property.php
https://www.tutorialrepublic.com/css-reference/css-border-property.php
https://www.tutorialrepublic.com/css-reference/css-border-bottom-property.php
https://www.tutorialrepublic.com/css-reference/css-border-bottom-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-bottom-left-radius-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-bottom-left-radius-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-bottom-right-radius-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-bottom-right-radius-property.php
https://www.tutorialrepublic.com/css-reference/css-border-bottom-style-property.php
https://www.tutorialrepublic.com/css-reference/css-border-bottom-width-property.php
https://www.tutorialrepublic.com/css-reference/css-border-collapse-property.php
https://www.tutorialrepublic.com/css-reference/css-border-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-image-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-image-outset-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-image-repeat-property.php

49 | P a g e

border-image-slice Specifies the inward offsets of the image-border.

border-image-source Specifies the location of the image to be used as a border.

border-image-width Specifies the width of the image-border.

border-left Sets the width, style, and color of the left border of an element.

border-left-color Sets the color of the left border of an element.

border-left-style Sets the style of the left border of an element.

border-left-width Sets the width of the left border of an element.

border-radius Defines the shape of the border corners of an element.

border-right Sets the width, style, and color of the right border of an element.

border-right-color Sets the color of the right border of an element.

border-right-style Sets the style of the right border of an element.

border-right-width Sets the width of the right border of an element.

border-spacing Sets the spacing between the borders of adjacent table cells.

border-style Sets the style of the border on all the four sides of an element.

border-top Sets the width, style, and color of the top border of an element.

border-top-color Sets the color of the top border of an element.

border-top-left-radius Defines the shape of the top-left border corner of an element.

border-top-right-radius Defines the shape of the top-right border corner of an element.

border-top-style Sets the style of the top border of an element.

border-top-width Sets the width of the top border of an element.

border-width Sets the width of the border on all the four sides of an element.

bottom Specify the location of the bottom edge of the positioned element.

box-shadow Applies one or more drop-shadows to the element's box.

box-sizing Alter the default CSS box model.

https://www.tutorialrepublic.com/css-reference/css3-border-image-slice-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-image-source-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-image-width-property.php
https://www.tutorialrepublic.com/css-reference/css-border-left-property.php
https://www.tutorialrepublic.com/css-reference/css-border-left-color-property.php
https://www.tutorialrepublic.com/css-reference/css-border-left-style-property.php
https://www.tutorialrepublic.com/css-reference/css-border-left-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-radius-property.php
https://www.tutorialrepublic.com/css-reference/css-border-right-property.php
https://www.tutorialrepublic.com/css-reference/css-border-right-color-property.php
https://www.tutorialrepublic.com/css-reference/css-border-right-style-property.php
https://www.tutorialrepublic.com/css-reference/css-border-right-width-property.php
https://www.tutorialrepublic.com/css-reference/css-border-spacing-property.php
https://www.tutorialrepublic.com/css-reference/css-border-style-property.php
https://www.tutorialrepublic.com/css-reference/css-border-top-property.php
https://www.tutorialrepublic.com/css-reference/css-border-top-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-top-left-radius-property.php
https://www.tutorialrepublic.com/css-reference/css3-border-top-right-radius-property.php
https://www.tutorialrepublic.com/css-reference/css-border-top-style-property.php
https://www.tutorialrepublic.com/css-reference/css-border-top-width-property.php
https://www.tutorialrepublic.com/css-reference/css-border-width-property.php
https://www.tutorialrepublic.com/css-reference/css-bottom-property.php
https://www.tutorialrepublic.com/css-reference/css3-box-shadow-property.php
https://www.tutorialrepublic.com/css-reference/css3-box-sizing-property.php

50 | P a g e

caption-side Specify the position of table's caption.

clear Specifies the placement of an element in relation to floating elements.

clip Defines the clipping region.

color Specify the color of the text of an element.

column-count Specifies the number of columns in a multi-column element.

column-fill Specifies how columns will be filled.

column-gap Specifies the gap between the columns in a multi-column element.

column-rule
Specifies a straight line, or "rule", to be drawn between each column in a
multi-column element.

column-rule-color
Specifies the color of the rules drawn between columns in a multi-
column layout.

column-rule-style
Specifies the style of the rule drawn between the columns in a multi-
column layout.

column-rule-width
Specifies the width of the rule drawn between the columns in a multi-
column layout.

column-span
Specifies how many columns an element spans across in a multi-
column layout.

column-width Specifies the optimal width of the columns in a multi-column element.

columns
A shorthand property for setting column-width and column-
count properties.

content Inserts generated content.

counter-increment Increments one or more counter values.

counter-reset Creates or resets one or more counters.

cursor Specify the type of cursor.

direction Define the text direction/writing direction.

display Specifies how an element is displayed onscreen.

empty-cells Show or hide borders and backgrounds of empty table cells.

flex Specifies the components of a flexible length.

flex-basis Specifies the initial main size of the flex item.

flex-direction Specifies the direction of the flexible items.

https://www.tutorialrepublic.com/css-reference/css-caption-side-property.php
https://www.tutorialrepublic.com/css-reference/css-clear-property.php
https://www.tutorialrepublic.com/css-reference/css-clip-property.php
https://www.tutorialrepublic.com/css-reference/css-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-count-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-fill-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-gap-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-rule-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-rule-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-rule-style-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-rule-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-span-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-columns-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-count-property.php
https://www.tutorialrepublic.com/css-reference/css3-column-count-property.php
https://www.tutorialrepublic.com/css-reference/css-content-property.php
https://www.tutorialrepublic.com/css-reference/css-counter-increment-property.php
https://www.tutorialrepublic.com/css-reference/css-counter-reset-property.php
https://www.tutorialrepublic.com/css-reference/css-cursor-property.php
https://www.tutorialrepublic.com/css-reference/css-direction-property.php
https://www.tutorialrepublic.com/css-reference/css-display-property.php
https://www.tutorialrepublic.com/css-reference/css-empty-cells-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-basis-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-direction-property.php

51 | P a g e

flex-flow A shorthand property for the flex-direction and the flex-wrap properties.

flex-grow
Specifies how the flex item will grow relative to the other items inside the
flex container.

flex-shrink
Specifies how the flex item will shrink relative to the other items inside
the flex container.

flex-wrap Specifies whether the flexible items should wrap or not.

float Specifies whether or not a box should float.

font Defines a variety of font properties within one declaration.

font-family Defines a list of fonts for element.

font-size Defines the font size for the text.

font-size-adjust Preserves the readability of text when font fallback occurs.

font-stretch Selects a normal, condensed, or expanded face from a font.

font-style Defines the font style for the text.

font-variant Specify the font variant.

font-weight Specify the font weight of the text.

height Specify the height of an element.

justify-content
Specifies how flex items are aligned along the main axis of the flex
container after any flexible lengths and auto margins have been
resolved.

left Specify the location of the left edge of the positioned element.

letter-spacing Sets the extra spacing between letters.

line-height Sets the height between lines of text.

list-style Defines the display style for a list and list elements.

list-style-image Specifies the image to be used as a list-item marker.

list-style-position Specifies the position of the list-item marker.

list-style-type Specifies the marker style for a list-item.

margin Sets the margin on all four sides of the element.

margin-bottom Sets the bottom margin of the element.

https://www.tutorialrepublic.com/css-reference/css3-flex-flow-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-direction-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-wrap-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-grow-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-shrink-property.php
https://www.tutorialrepublic.com/css-reference/css3-flex-wrap-property.php
https://www.tutorialrepublic.com/css-reference/css-float-property.php
https://www.tutorialrepublic.com/css-reference/css-font-property.php
https://www.tutorialrepublic.com/css-reference/css-font-family-property.php
https://www.tutorialrepublic.com/css-reference/css-font-size-property.php
https://www.tutorialrepublic.com/css-reference/css3-font-size-adjust-property.php
https://www.tutorialrepublic.com/css-reference/css3-font-stretch-property.php
https://www.tutorialrepublic.com/css-reference/css-font-style-property.php
https://www.tutorialrepublic.com/css-reference/css-font-variant-property.php
https://www.tutorialrepublic.com/css-reference/css-font-weight-property.php
https://www.tutorialrepublic.com/css-reference/css-height-property.php
https://www.tutorialrepublic.com/css-reference/css3-justify-content-property.php
https://www.tutorialrepublic.com/css-reference/css-left-property.php
https://www.tutorialrepublic.com/css-reference/css-letter-spacing-property.php
https://www.tutorialrepublic.com/css-reference/css-line-height-property.php
https://www.tutorialrepublic.com/css-reference/css-list-style-property.php
https://www.tutorialrepublic.com/css-reference/css-list-style-image-property.php
https://www.tutorialrepublic.com/css-reference/css-list-style-position-property.php
https://www.tutorialrepublic.com/css-reference/css-list-style-type-property.php
https://www.tutorialrepublic.com/css-reference/css-margin-property.php
https://www.tutorialrepublic.com/css-reference/css-margin-bottom-property.php

52 | P a g e

margin-left Sets the left margin of the element.

margin-right Sets the right margin of the element.

margin-top Sets the top margin of the element.

max-height Specify the maximum height of an element.

max-width Specify the maximum width of an element.

min-height Specify the minimum height of an element.

min-width Specify the minimum width of an element.

opacity Specifies the transparency of an element.

order
Specifies the order in which a flex items are displayed and laid out within
a flex container.

outline Sets the width, style, and color for all four sides of an element's outline.

outline-color Sets the color of the outline.

outline-offset Set the space between an outline and the border edge of an element.

outline-style Sets a style for an outline.

outline-width Sets the width of the outline.

overflow Specifies the treatment of content that overflows the element's box.

overflow-x
Specifies the treatment of content that overflows the element's box
horizontally.

overflow-y
Specifies the treatment of content that overflows the element's box
vertically.

padding Sets the padding on all four sides of the element.

padding-bottom Sets the padding to the bottom side of an element.

padding-left Sets the padding to the left side of an element.

padding-right Sets the padding to the right side of an element.

padding-top Sets the padding to the top side of an element.

page-break-after Insert a page breaks after an element.

page-break-before Insert a page breaks before an element.

https://www.tutorialrepublic.com/css-reference/css-margin-left-property.php
https://www.tutorialrepublic.com/css-reference/css-margin-right-property.php
https://www.tutorialrepublic.com/css-reference/css-margin-top-property.php
https://www.tutorialrepublic.com/css-reference/css-max-height-property.php
https://www.tutorialrepublic.com/css-reference/css-max-width-property.php
https://www.tutorialrepublic.com/css-reference/css-min-height-property.php
https://www.tutorialrepublic.com/css-reference/css-min-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-opacity-property.php
https://www.tutorialrepublic.com/css-reference/css3-order-property.php
https://www.tutorialrepublic.com/css-reference/css-outline-property.php
https://www.tutorialrepublic.com/css-reference/css-outline-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-outline-offset-property.php
https://www.tutorialrepublic.com/css-reference/css-outline-style-property.php
https://www.tutorialrepublic.com/css-reference/css-outline-width-property.php
https://www.tutorialrepublic.com/css-reference/css-overflow-property.php
https://www.tutorialrepublic.com/css-reference/css3-overflow-x-property.php
https://www.tutorialrepublic.com/css-reference/css3-overflow-y-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-bottom-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-left-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-right-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-top-property.php
https://www.tutorialrepublic.com/css-reference/css-page-break-after-property.php
https://www.tutorialrepublic.com/css-reference/css-page-break-before-property.php

53 | P a g e

page-break-inside Insert a page breaks inside an element.

perspective
Defines the perspective from which all child elements of the object are
viewed.

perspective-origin
Defines the origin (the vanishing point for the 3D space) for the
perspective property.

position Specifies how an element is positioned.

quotes Specifies quotation marks for embedded quotations.

resize Specifies whether or not an element is resizable by the user.

right Specify the location of the right edge of the positioned element.

tab-size Specifies the length of the tab character.

table-layout Specifies a table layout algorithm.

text-align Sets the horizontal alignment of inline content.

text-align-last
Specifies how the last line of a block or a line right before a forced line
break is aligned when text-align is justify.

text-decoration Specifies the decoration added to text.

text-decoration-color Specifies the color of the text-decoration-line.

text-decoration-line Specifies what kind of line decorations are added to the element.

text-decoration-style
Specifies the style of the lines specified by the text-decoration-
line property

text-indent Indent the first line of text.

text-justify
Specifies the justification method to use when the text-align property is
set to justify.

text-overflow
Specifies how the text content will be displayed, when it overflows the
block containers.

text-shadow Applies one or more shadows to the text content of an element.

text-transform Transforms the case of the text.

top Specify the location of the top edge of the positioned element.

transform Applies a 2D or 3D transformation to an element.

transform-origin Defines the origin of transformation for an element.

transform-style Specifies how nested elements are rendered in 3D space.

https://www.tutorialrepublic.com/css-reference/css-page-break-inside-property.php
https://www.tutorialrepublic.com/css-reference/css3-perspective-property.php
https://www.tutorialrepublic.com/css-reference/css3-perspective-origin-property.php
https://www.tutorialrepublic.com/css-reference/css-position-property.php
https://www.tutorialrepublic.com/css-reference/css-quotes-property.php
https://www.tutorialrepublic.com/css-reference/css3-resize-property.php
https://www.tutorialrepublic.com/css-reference/css-right-property.php
https://www.tutorialrepublic.com/css-reference/css3-tab-size-property.php
https://www.tutorialrepublic.com/css-reference/css-table-layout-property.php
https://www.tutorialrepublic.com/css-reference/css-text-align-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-align-last-property.php
https://www.tutorialrepublic.com/css-reference/css-text-align-property.php
https://www.tutorialrepublic.com/css-reference/css-text-decoration-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-color-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-line-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-line-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-style-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-line-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-decoration-line-property.php
https://www.tutorialrepublic.com/css-reference/css-text-indent-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-justify-property.php
https://www.tutorialrepublic.com/css-reference/css-text-align-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-overflow-property.php
https://www.tutorialrepublic.com/css-reference/css3-text-shadow-property.php
https://www.tutorialrepublic.com/css-reference/css-text-transform-property.php
https://www.tutorialrepublic.com/css-reference/css-top-property.php
https://www.tutorialrepublic.com/css-reference/css3-transform-property.php
https://www.tutorialrepublic.com/css-reference/css3-transform-origin-property.php
https://www.tutorialrepublic.com/css-reference/css3-transform-style-property.php

54 | P a g e

transition Defines the transition between two states of an element.

transition-delay Specifies when the transition effect will start.

transition-duration
Specifies the number of seconds or milliseconds a transition effect
should take to complete.

transition-property
Specifies the names of the CSS properties to which a transition effect
should be applied.

transition-timing-
function

Specifies the speed curve of the transition effect.

vertical-align

Sets the vertical positioning of an element relative to the current text
baseline.

visibility Specifies whether or not an element is visible.

white-space Specifies how white space inside the element is handled.

width Specify the width of an element.

word-break Specifies how to break lines within words.

word-spacing Sets the spacing between words.

word-wrap
Specifies whether to break words when the content overflows the
boundaries of its container.

z-index Specifies a layering or stacking order for positioned elements.

CSS Pseudo-classes
A pseudo-class is used to define a special state of an element.
For example, it can be used to:

 Style an element when a user mouses over it
 Style visited and unvisited links differently
 Style an element when it gets focus

/* unvisited link */

a:link {

 color: #FF0000;

}

/* visited link */

a:visited {

 color: #00FF00;

}

/* mouse over link */

a:hover {

 color: #FF00FF;

}

/* selected link */

a:active {

 color: #0000FF;

}

Note: a:hover MUST come after a:link
and a:visited in the CSS definition in
order to be effective! a:active MUST
come after a:hover in the CSS definition
in order to be effective! Pseudo-class
names are not case-sensitive.

https://www.tutorialrepublic.com/css-reference/css3-transition-property.php
https://www.tutorialrepublic.com/css-reference/css3-transition-delay-property.php
https://www.tutorialrepublic.com/css-reference/css3-transition-duration-property.php
https://www.tutorialrepublic.com/css-reference/css3-transition-property-property.php
https://www.tutorialrepublic.com/css-reference/css3-transition-timing-function-property.php
https://www.tutorialrepublic.com/css-reference/css3-transition-timing-function-property.php
https://www.tutorialrepublic.com/css-reference/css-vertical-align-property.php
https://www.tutorialrepublic.com/css-reference/css-visibility-property.php
https://www.tutorialrepublic.com/css-reference/css-white-space-property.php
https://www.tutorialrepublic.com/css-reference/css-width-property.php
https://www.tutorialrepublic.com/css-reference/css3-word-break-property.php
https://www.tutorialrepublic.com/css-reference/css-word-spacing-property.php
https://www.tutorialrepublic.com/css-reference/css3-word-wrap-property.php
https://www.tutorialrepublic.com/css-reference/css-z-index-property.php

55 | P a g e

CSS Navigation Bar

Having easy-to-use navigation is important for any web site.

With CSS you can transform boring HTML menus into good-looking navigation bars.

Navigation Bar = List of Links

A navigation bar needs standard HTML as a base.

In our examples we will build the navigation bar from a standard HTML list.

A navigation bar is basically a list of links, so using the and elements makes
perfect sense:

 Home
 News
 Contact
 About

ul {
 list-style-type: none;
 margin: 0;
 padding: 0;
}

CSS Dropdowns

<style>
.dropdown {
 position: relative;
 display: inline-block;
}

.dropdown-content {
 display: none;
 position: absolute;
 background-color: #f9f9f9;
 min-width: 160px;
 box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
 padding: 12px 16px;
 z-index: 1;
}

.dropdown:hover .dropdown-content {
 display: block;
}
</style>

<div class="dropdown">
 Mouse over me
 <div class="dropdown-content">
 <p>Hello World!</p>
 </div>
</div>

56 | P a g e

CSS Image Gallery

<html>
<head>
</head>
<body>

<div class="gallery">

 <img src="img_5terre.jpg" alt="Cinque
Terre" width="600" height="400">

 <div class="desc">Add a description of the image here</div>
</div>

<div class="gallery">

 <div class="desc">Add a description of the image here</div>
</div>

<div class="gallery">

 <img src="img_lights.jpg" alt="Northern
Lights" width="600" height="400">

 <div class="desc">Add a description of the image here</div>
</div>

<div class="gallery">

 <img src="img_mountains.jpg" alt="Mountains"

width="600" height="400">

 <div class="desc">Add a description

of the image here</div>
</div>

</body>
</html>

<style>
div.gallery {
 margin: 5px;
 border: 1px solid #ccc;
 float: left;
 width: 180px;
}

div.gallery:hover {
 border: 1px solid #777;
}

div.gallery img {
 width: 100%;
 height: auto;
}

div.desc {
 padding: 15px;
 text-align: center;
}
</style>

57 | P a g e

CSS Image Sprites

An image sprite is a collection of images put into a single image.

A web page with many images can take a long time to load and generates multiple server
requests. Using image sprites will reduce the number of server requests and save
bandwidth.

Image Sprites - Hover Effect

Our new image ("img_navsprites_hover.gif") contains three navigation images and three
images to use for hover effects:

navigation images

Because this is one single image, and not six separate files, there will be no loading delay
when a user hovers over the image.

We only add three lines of code to add the hover effect:

 - Only
defines a small transparent image because the
src attribute cannot be empty. The displayed
image will be the background image we specify
in CSS
width: 46px; height: 44px; - Defines the
portion of the image we want to use
background: url(img_navsprites.gif) 0 0; -
Defines the background image and its position
(left 0px, top 0px)

This is the easiest way to use image sprites,
now we want to expand it by using links and
hover effects.

#home a:hover {
 background: url('img_navsprites_hover.gif') 0 -45px;
}

#prev a:hover {
 background: url('img_navsprites_hover.gif') -47px -45px;
}

#next a:hover {
 background: url('img_navsprites_hover.gif') -91px -45px;
}

#home {

 width: 46px;

 height: 44px;

 background: url(img_navsprites.gif) 0 0;

}

#next {

 width: 43px;

 height: 44px;

 background: url(img_navsprites.gif) -
91px 0;

}

58 | P a g e

CSS Attribute Selectors

The [attribute] selector is used to select elements with a specified attribute

The following example selects all <a> elements with a target attribute:

a[target] {
 background-color: yellow;
}

CSS [attribute="value"] Selector

The [attribute="value"] selector is used to select elements with a specified attribute and
value.

The following example selects all <a> elements with a target="_blank" attribute:

a[target="_blank"] {

 background-color: yellow;

}

CSS [attribute~="value"] Selector

The [attribute~="value"] selector is used to select elements with an attribute value
containing a specified word.

The following example selects all elements with a title attribute that contains a space-
separated list of words, one of which is "flower":

[title~="flower"] {

 border: 5px solid yellow;

}

CSS [attribute|="value"] Selector

The [attribute|="value"] selector is used to select elements with the specified attribute
starting with the specified value.

The following example selects all elements with a class attribute value that begins with
"top":

Note: The value has to be a whole word, either alone, like class="top", or followed by a
hyphen(-), like class="top-text"!

[class|="top"] {

 background: yellow;

}

CSS [attribute^="value"] Selector

The [attribute^="value"] selector is used to select elements whose attribute value begins
with a specified value.

The following example selects all elements with a class attribute value that begins with
"top": Note: The value does not have to be a whole word!

[class^="top"] {

 background: yellow;

}

59 | P a g e

Website Layout

A website is often divided into headers, menus, content and a footer:

There are tons of different layout designs to choose from. However, the structure above, is
one of the most common, and we will take a closer look at it in this tutorial.

Header

A header is usually located at the top of the website (or right below a top navigation menu).
It often contains a logo or the website name:

Navigation Bar

A navigation bar contains a list of links to help visitors navigating through your website:

Content

The layout in this section, often depends on the target users. The most common layout is
one (or combining them) of the following:

 1-column (often used for mobile browsers)

 2-column (often used for tablets and laptops)

 3-column layout (only used for desktops)

60 | P a g e

Footer

The footer is placed at the bottom of your page. It often contains information like copyright
and contact info:

0.3 Java Scripts

JavaScript is a scripting or programming language that allows you to implement complex
features on web pages — every time a web page does more than just sit there and display
static information for you to look at — displaying timely content updates, interactive maps,
animated 2D/3D graphics, scrolling video jukeboxes, etc. — you can bet that JavaScript is
probably involved. It is the third layer of the layer cake of standard web technologies, two of
which (HTML and CSS) we have covered in much more detail in other parts of the Learning
Area.

the HTML code that will tell the browser that it needs to run a script. Once the browser sees

these special tags, it interprets the JavaScript commands and will do what you have
directed

it to do with your code. Thus, by simply editing an HTML document, you can begin using

JavaScript on your Web pages and see the results.

For example, the following code adds some JavaScript to an HTML file that writes some

text onto the Web page. Notice the addition of <script> and </script> tags. The code within

them is JavaScript.

<html>

<body>

<script type="text/javascript">

document.write("This writes text to the page");

</script>

</body>

</html>

The next chapter looks at how to add JavaScript in an HTML file by using the <script> and

</script> HTML tags. This will be your first step on the road to becoming a JavaScript coder

The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script> tags

<script>
document.getElementById("demo").innerHTML = "My First JavaScript";
</script>

JavaScript Functions and Events

A JavaScript function is a block of JavaScript code, that can be executed when "called" for.

For example, a function can be called when an event occurs, like when the user clicks a
button.

61 | P a g e

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or in both.

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an HTML page.

The function is invoked (called) when a button is clicked:

<!DOCTYPE html>
<html>

<head>
<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>
</head>
<body>

<h1>A Web Page</h1>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

</body>
</html>

JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an
HTML page. The function is invoked (called) when a button is clicked:

<!DOCTYPE html>
<html>
<body>

<h1>A Web Page</h1>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>

</body>
</html>

Placing scripts at the bottom of the <body> element improves the display speed,

because script interpretation slows down the display

62 | P a g e

External References

External scripts can be referenced with a full URL or with a path relative to the current web
page. This example uses a full URL to link to a script:

<script src="https://iba.lk/js/myScript1.js"></script>

<script src="/js/myScript1.js"></script>

JavaScript Output

JavaScript can "display" data in different ways:

 Writing into an HTML element, using innerHTML.
 Writing into the HTML output using document.write().
 Writing into an alert box, using window.alert().
 Writing into the browser console, using console.log().

Using innerHTML
To access an HTML element, JavaScript can use the document.getElementById(id)
method. The id attribute defines the HTML element. The innerHTML property defines the
HTML content:

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My First Paragraph</p>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = 5 + 6;
</script>

</body>
</html>

Using document.write()
For testing purposes, it is convenient to use document.write():

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My first paragraph.</p>

<script>
document.write(5 + 6);
</script>
</body>
</html>

Using console.log()
For debugging purposes, you can call the
console.log() method in the browser to
display data.

<!DOCTYPE html>
<html>
<body>

<script>
console.log(5 + 6);
</script>

</body>
</html>

63 | P a g e

Using window.alert()

You can use an alert box to display data:

<script>
window.alert(5 + 6);
</script>

JavaScript Statements

JavaScript statements are composed of:

Values, Operators, Expressions, Keywords, and Comments.

This statement tells the browser to write "Hello Dolly." inside an HTML element with
id="demo":

The statements are executed, one by one, in the same order as they are written.

document.getElementById("demo").innerHTML = "Hello Dolly.";

JavaScript Keywords

JavaScript statements often start with a keyword to identify the JavaScript action to be
performed. Here is a list of some of the keywords you will learn about in this tutorial:

Keyword Description

break Terminates a switch or a loop

continue Jumps out of a loop and starts at the top

debugger Stops the execution of JavaScript, and calls (if available) the debugging function

do ... while Executes a block of statements, and repeats the block, while a condition is true

for Marks a block of statements to be executed, as long as a condition is true

function Declares a function

if ... else Marks a block of statements to be executed, depending on a condition

return Exits a function

switch Marks a block of statements to be executed, depending on different cases

try ... catch Implements error handling to a block of statements

var Declares a variable

JavaScript Variables

JavaScript variables are containers for storing data values.

In this example, x, y, and z, are variables, declared with the var keyword:

var x = 5; x stores the value 5
var y = 6; y stores the value 6
var z = x + y; z stores the value 11

JavaScript Identifiers

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum, totalVolume).

64 | P a g e

The general rules for constructing names for variables (unique identifiers) are:

 Names can contain letters, digits, underscores, and dollar signs.
 Names must begin with a letter
 Names can also begin with $ and _ (but we will not use it in this tutorial)
 Names are case sensitive (y and Y are different variables)
 Reserved words (like JavaScript keywords) cannot be used as names

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers:

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation (ES2016)

/ Division

% Modulus (Division Remainder)

++ Increment

-- Decrement

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

JavaScript Comparison Operators

Operator Description

== equal to

=== equal value and equal type

!= not equal

!== not equal value or not equal type

> greater than

< less than

>= greater than or equal to

<= less than or equal to

? ternary operator

https://www.w3schools.com/js/js_es6.asp

65 | P a g e

JavaScript Logical Operators

Operator Description

&& logical and

|| logical or

! logical not

JavaScript Type Operators

Operator Description

typeof Returns the type of a variable

instanceof Returns true if an object is an instance of an object type

JavaScript Functions

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

A JavaScript function is defined with the function keyword, followed by a name, followed by
parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same rules as variables).

The parentheses may include parameter names separated by commas:

(parameter1, parameter2, ...

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {
 // code to be executed
}

The code inside the function will execute when "something" invokes (calls) the function:

When an event occurs (when a user clicks a button)

When it is invoked (called) from JavaScript code

Automatically (self invoked)

Function Return

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to execute the code after the
invoking statement.

Functions often compute a return value. The return value is "returned" back to the "caller":

var x = myFunction(4, 3); // Function is called, return value will
end up in x

function myFunction(a, b) {
 return a * b; // Function returns the product of a and b
}

Why Functions?

You can reuse code: Define the code once, and use it many times.

You can use the same code many times with different arguments, to produce different results.

function toCelsius(fahrenheit) {
 return (5/9) * (fahrenheit-32);
}
document.getElementById("demo").innerHTML = toCelsius(77);

66 | P a g e

The () Operator Invokes the Function

Using the example above, toCelsius refers to the function object, and toCelsius() refers to the
function result.

Accessing a function without () will return the function object instead of the function result.

function toCelsius(fahrenheit) {
 return (5/9) * (fahrenheit-32);
}
document.getElementById("demo").innerHTML = toCelsius;

Functions Used as Variable Values

Functions can be used the same way as you use variables, in all types of formulas, assignments,
and calculations.

var x = toCelsius(77);
var text = "The temperature is " + x + " Celsius";

var text = "The temperature is " + toCelsius(77) + " Celsius";

JavaScript Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed

 An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added to a <button> element:

<button onclick="document.getElementById('demo').innerHTML=Date()">

The time is?</button>

In the example above, the JavaScript code changes the content of the element with id="demo".

Here is a list of some common HTML events:

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

67 | P a g e

What can JavaScript Do?

Event handlers can be used to handle, and verify, user input, user actions, and browser actions:

 Things that should be done every time a page loads

 Things that should be done when the page is closed

 Action that should be performed when a user clicks a button

 Content that should be verified when a user inputs data

 And more …

Many different methods can be used to let JavaScript work with events:

 HTML event attributes can execute JavaScript code directly

 HTML event attributes can call JavaScript functions

 You can assign your own event handler functions to HTML elements

 You can prevent events from being sent or being handled

 And more ...

JavaScript Strings

A JavaScript string is zero or more characters written inside quotes.

var answer1 = "It's alright";
var answer2 = "He is called 'Johnny'";
var answer3 = 'He is called "Johnny"';

String Length

To find the length of a string, use the built-in length property

var txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
var sln = txt.length;

Escape Character

Because strings must be written within quotes, JavaScript will misunderstand this string:

 var x = "We are the so-called "Vikings" from the north.";

The string will be chopped to "We are the so-called ".

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string characters:

Code Result Description

\' ' Single quote

\" " Double quote

\\ \ Backslash

var x = "We are the so-called \"Vikings\" from the north.";

Six other escape sequences are valid in JavaScript:

Code Result

\b Backspace

\f Form Feed

\n New Line

68 | P a g e

\r Carriage Return

\t Horizontal Tabulator

\v Vertical Tabulator

The 6 escape characters above were originally designed to control typewriters, teletypes, and fax
machines. They do not make any sense in HTML.

Breaking Long Code Lines

For best readability, programmers often like to avoid code lines longer than 80 characters.

If a JavaScript statement does not fit on one line, the best place to break it is after an operator:

You can also break up a code line within a text string with a single backslash:

document.getElementById("demo").innerHTML = "Hello \
Dolly!";

JavaScript String Functions

Method Meaning Example

length determines length of string
var a = “hackr.io”;
a.length;

indexof()
finds position of the first occurrence
of a character or text in the string

var a = “hackr.io is nice website”;
var b = a.indexof(“nice”);

lastindexof()
returns last occurrence of text in a
string

var a = “hackr.io is nice website”;
var b = a.indexof(“nice”, 6);

search()
searches and returns position of a
specified value in string

var a = “hackr.io is nice website”;
var b = a.search(“nice”);

slice()
extracts and returns part of a string
as another new string

var a = “hackr.io is nice website”;
var b = a.slice(13); will return nice
website.

substring()

substring returns part of the string
from start index to the end index
specified. cannot take negative
values unlike slice()

var a = “hackr.io is nice website”;
var b = a.substring(0, 7);

substr()
returns the sliced out portion of a
string, the second parameter being
the length of the final string.

var a = “hackr.io is nice website”;
var b = a.substr(13, 8);

replace()
replaces a particular value with
another

var a = “hackr.io is nice website”;
var b = a.replace(“nice”, “good”);

touppercase()
changes all characters into
uppercase

var a = “hackr.io is nice website”;
var b = a.touppercase (a);

tolowercase()
changes all characters into
lowercase

var a = “hackr.io is nice website”;
var b = a.tolowercase(a);

concat()
joins two or more strings together
into another string

var a = “my name is”;
var b = “john”;
var c = a.concat(“: ”, b);

69 | P a g e

trim() removes white spaces from a string var a = “hi, there! ”;a.trim();

charat()
finds character at a specified
position

var a = “hackr.io”;
a.charat(1) will return a

charcodeat()
returns the unicode of character at
the specified position

“hackr”.charcodeat(0);
will return 72

split()
convert a string into array based on
special character

var a = “hackr.io”;
var arr = a.split(“”);
will return an array of characters
h,a,c,k,r and so on..

accessing
characters using []

access a character of string using its
index (doesn’t work on some
versions of ie)

var a = “hackr.io”;
a[2] will return c

JavaScript Arrays

JavaScript arrays are used to store multiple values in a single variable.

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could
look like this:

var car1 = "Saab";

var car2 = "Volvo";

var car3 = "BMW";

However, what if you want to loop through the cars and find a specific one? And what if you had not
3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to
an index number.

var cars = ["Saab", "Volvo", "BMW"];

Creating an Array

Using an array literal is the easiest way to create a JavaScript Array.

 var cars = ["Saab", "Volvo", "BMW"];

 var cars = new Array("Saab", "Volvo", "BMW");

Access the Elements of an Array

You access an array element by referring to the index number

var cars = ["Saab", "Volvo", "BMW"];
document.getElementById("demo").innerHTML = cars[0];

70 | P a g e

Changing an Array Element

This statement changes the value of the first element in cars:

Functions Description

concat() Concatenate different arrays into one.

join() Joins all the elements of one array as a string

indexof() Returns the index (first position) of an element in the array

lastindexof() Returns the last position of an element in the array

sort() Alphabetic sort of array elements

reverse() Sort elements in descending order

valueof() Primitive value of the element specified

slice() Cut a portion of one array and put it in a new array

splice() Add elements to an array in a specific manner and position

unshift() Add new element to the array in the beginning

shift() Remove first element of the array

pop() Remove the last element of the array

push() Add new element to the array as the last one

tostring() Prints the string value of the elements of the array

JavaScript Array Iteration Methods

Array.forEach()

The forEach() method calls a function (a callback function) once for each array element.

var txt = "";
var numbers = [45, 4, 9, 16, 25];
numbers.forEach(myFunction);

function myFunction(value, index, array) {
 txt = txt + value + "
";
}

var txt = "";
var numbers = [45, 4, 9, 16, 25];
numbers.forEach(myFunction);

function myFunction(value) {
 txt = txt + value + "
";
}

JavaScript Date Output

By default, JavaScript will use the browser's time zone and display a date as a full text string:

Fri Jan 01 2021 23:07:18 GMT+0530 (India Standard Time)

71 | P a g e

Creating Date Objects

Date objects are created with the new Date() constructor.

There are 4 ways to create a new date object:

new Date()
new Date(year, month, day, hours, minutes, seconds, milliseconds)
new Date(milliseconds)
new Date(date string)

Date() Creates a new date object with current date and time

Date(2019, 10, 21, 12,
24, 58, 13)

Create a custom date object. Format – (yyyy, mm, dd, hh, min, s, ms).
Except for year and month, all parameters are optional.

Date("2019-10-21") Date declaration as a string

getDate() Get the day of the month as a number (1-31)

getDay() The weekday as a number (0-6)

getFullYear() Year as a four-digit number (yyyy)

getHours() Get the hour (0-23)

getMilliseconds() Get the millisecond (0-999)

getMinutes() Get the minute (0-59)

getMonth() Month as a number (0-11)

getSeconds() Get the second (0-59)

getTime() Get the milliseconds since January 1, 1970

getUTCDate()
The day (date) of the month in the specified date according to
universal time (also available for day, month, full year, hours, minutes
etc.)

parse Parses a string representation of a date and returns the number

setDate() Set the day as a number (1-31)

setFullYear() Sets the year (optionally month and day)

setHours() Set the hour (0-23)

setMilliseconds() Set milliseconds (0-999)

setMinutes() Sets the minutes (0-59)

setMonth() Set the month (0-11)

setSeconds() Sets the seconds (0-59)

setTime() Set the time (milliseconds since January 1, 1970)

setUTCDate()
Sets the day of the month for a specified date according to universal
time (also available for day, month, full year, hours, minutes etc.)

JavaScript if else and else if

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

72 | P a g e

 Use if to specify a block of code to be executed, if a specified condition is true

 Use else to specify a block of code to be executed, if the same condition is false

 Use else if to specify a new condition to test, if the first condition is false

 Use switch to specify many alternative blocks of code to be executed

if (time < 10) {
 greeting = "Good morning";
} else if (time < 20) {
 greeting = "Good day";
} else {
 greeting = "Good evening";
}

JavaScript Switch Statement

Use the switch statement to select one of many code blocks to be executed.

This is how it works:

1. The switch expression is evaluated once.
2. The value of the expression is compared with the values of each case.
3. If there is a match, the associated block of code is executed.
4. If there is no match, the default code block is executed.

switch (new Date().getDay()) {
 case 0:
 day = "Sunday";
 break;
 case 1:
 day = "Monday";
 break;
 case 2:
 day = "Tuesday";
 break;
 }

JavaScript Loops

Loops are handy, if you want to run the same code over and over again, each time with a different
value. Often this is the case when working with arrays:

for looping in javascript
var i;
for (i = 0; i < 5; i++
{ // code}

while
execute a block of code while some condition
is true

while (product.length > 5)
{// some code}

do…
while

similar to while, but executes at least as the
condition is applied after the code is executed

do {
// code
}while (condition){
}

break
break and exit the cycle based on some
conditions

if (i <10)
 break;

continue
continue next iteration if some conditions are
met

if (j>10)
 continue;

73 | P a g e

JavaScript Regular Expressions

A regular expression is a sequence of characters that forms a search pattern.

When you search for data in a text, you can use this search pattern to describe what you are
searching for.

A regular expression can be a single character, or a more complicated pattern.

Regular expressions can be used to perform all types of text search and text replace operations.

Using String Methods

In JavaScript, regular expressions are often used with the two string methods: search() and
replace().

The search() method uses an expression to search for a match, and returns the position of the
match.

The replace() method returns a modified string where the pattern is replaced.

Using String search() With a String

The search() method searches a string for a specified value and returns the position of the match:

var str = "Visit IBA Campus";
var n = str.search(/IBA/i);

e evaluate replacement

i case-insensitive matching

g global matching – find all matches

m multiple line matching

s treat strings as a single line

x allow comments and whitespace in the pattern

u ungreedy pattern

JavaScript Form Validation

HTML form validation can be done by JavaScript.

If a form field (fname) is empty, this function alerts a message, and returns false, to prevent the form
from being submitted:

<form name="myForm" action="/action_page.php" onsubmit="return
validateForm()" method="post">
Name: <input type="text" name="fname">
<input type="submit" value="Submit">
</form>

function validateForm() {
 var x = document.forms["myForm"]["fname"].value;
 if (x == "") {
 alert("Name must be filled out");
 return false;
 }
}

74 | P a g e

JavaScript HTML DOM

The HTML DOM (Document Object Model)

When a web page is loaded, the browser creates a Document Object Model of the page.

The HTML DOM model is constructed as a tree of Objects:

With the object model, JavaScript gets all the power it needs to create dynamic HTML:

 JavaScript can change all the HTML elements in the page

 JavaScript can change all the HTML attributes in the page

 JavaScript can change all the CSS styles in the page

 JavaScript can remove existing HTML elements and attributes

 JavaScript can add new HTML elements and attributes

 JavaScript can react to all existing HTML events in the page

 JavaScript can create new HTML events in the page

The HTML DOM Document Object

The document object represents your web page.

If you want to access any element in an HTML page, you always start with accessing the document
object.

Below are some examples of how you can use the document object to access and manipulate
HTML.

Finding HTML Elements

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByClassName(name) Find elements by class name

Changing HTML Elements

Property Description

element.innerHTML = new html content Change the inner HTML of an element

element.attribute = new value
Change the attribute value of an HTML
element

75 | P a g e

element.style.property = new style Change the style of an HTML element

Method Description

element.setAttribute(attribute, value)
Change the attribute value of an HTML
element

Adding and Deleting Elements

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text)
Write into the HTML output
stream

Adding Events Handlers

Method Description

document.getElementById(id).onclick = function(){code}
Adding event handler code to
an onclick event

Finding HTML Objects

The first HTML DOM Level 1 (1998), defined 11 HTML objects, object collections, and properties.
These are still valid in HTML5.

Later, in HTML DOM Level 3, more objects, collections, and properties were added.

Property Description DOM

document.anchors Returns all <a> elements that have a name attribute 1

document.applets Returns all <applet> elements (Deprecated in HTML5) 1

document.baseURI Returns the absolute base URI of the document 3

document.body Returns the <body> element 1

document.cookie Returns the document's cookie 1

document.doctype Returns the document's doctype 3

document.documentElement Returns the <html> element 3

document.documentMode Returns the mode used by the browser 3

document.documentURI Returns the URI of the document 3

document.domain Returns the domain name of the document server 1

document.domConfig Obsolete. Returns the DOM configuration 3

document.embeds Returns all <embed> elements 3

document.forms Returns all <form> elements 1

document.head Returns the <head> element 3

document.images Returns all elements 1

76 | P a g e

document.implementation Returns the DOM implementation 3

document.inputEncoding Returns the document's encoding (character set) 3

document.lastModified Returns the date and time the document was updated 3

document.links Returns all <area> and <a> elements that have a href attribute 1

document.readyState Returns the (loading) status of the document 3

document.referrer Returns the URI of the referrer (the linking document) 1

document.scripts Returns all <script> elements 3

document.strictErrorChecking Returns if error checking is enforced 3

document.title Returns the <title> element 1

document.URL Returns the complete URL of the document 1

JSON - Introduction

 JSON: JavaScript Object Notation.

 JSON is a syntax for storing and exchanging data.

 JSON is text, written with JavaScript object notation.

Exchanging Data

When exchanging data between a browser and a server, the data can only be text.

JSON is text, and we can convert any JavaScript object into JSON, and send JSON to the server.

We can also convert any JSON received from the server into JavaScript objects.

This way we can work with the data as JavaScript objects, with no complicated parsing and
translations.

Why use JSON?

Since the JSON format is text only, it can easily be sent to and from a server, and used as a data
format by any programming language.

JavaScript has a built in function to convert a string, written in JSON format, into native JavaScript
objects:

JSON.parse()

So, if you receive data from a server, in JSON format, you can use it like any other JavaScript
object.

Sending Data

If you have data stored in a JavaScript object, you can convert the object into JSON, and send it to
a server:

var myObj = {name: "John", age: 31, city: "New York"};
var myJSON = JSON.stringify(myObj);
window.location = "demo_json.php?x=" + myJSON;

Receiving Data

If you receive data in JSON format, you can convert it into a JavaScript object:

var myJSON = '{"name":"John", "age":31, "city":"New York"}';
var myObj = JSON.parse(myJSON);
document.getElementById("demo").innerHTML = myObj.name;

77 | P a g e

Valid Data Types

In JSON, values must be one of the following data types:

 a string

 a number

 an object (JSON object)

 an array

 a boolean

 null

JSON Strings

Strings in JSON must be written in double quotes.

{ "name":"John" }

JSON Numbers

Numbers in JSON must be an integer or a floating point.

{ "age":30 }

JSON Objects

Values in JSON can be objects.

{
"employee":{ "name":"John", "age":30, "city":"New York" }
}

JSON Arrays

Values in JSON can be arrays.

{
"employees":["John", "Anna", "Peter"]
}

AJAX Introduction

AJAX = Asynchronous JavaScript And XML.

AJAX is not a programming language.

AJAX just uses a combination of:

 A browser built-in XMLHttpRequest object (to request data from a web server)

 JavaScript and HTML DOM (to display or use the data)

AJAX is a misleading name. AJAX applications might use XML to transport data, but it is equally

common to transport data as plain text or JSON text.

AJAX allows web pages to be updated asynchronously by exchanging data with a web server

behind the scenes. This means that it is possible to update parts of a web page, without

reloading the whole page.

78 | P a g e

1. An event occurs in a web page (the page is loaded, a button is clicked)

2. An XMLHttpRequest object is created by JavaScript

3. The XMLHttpRequest object sends a request to a web server

4. The server processes the request

5. The server sends a response back to the web page

6. The response is read by JavaScript

7. Proper action (like page update) is performed by JavaScript

The XMLHttpRequest Object

All modern browsers support the XMLHttpRequest object.

The XMLHttpRequest object can be used to exchange data with a web server behind the scenes.
This means that it is possible to update parts of a web page, without reloading the whole page.

Create an XMLHttpRequest Object

All modern browsers (Chrome, Firefox, IE7+, Edge, Safari, Opera) have a built-in XMLHttpRequest
object. Syntax for creating an XMLHttpRequest object:

variable = new XMLHttpRequest();

XMLHttpRequest Object Methods

Method Description

new XMLHttpRequest() Creates a new XMLHttpRequest object

abort() Cancels the current request

getAllResponseHeaders() Returns header information

getResponseHeader() Returns specific header information

open(method, url, async, user, psw)

Specifies the request

method: the request type GET or POST
url: the file location
async: true (asynchronous) or false
(synchronous)
user: optional user name
psw: optional password

send()
Sends the request to the server
Used for GET requests

send(string)
Sends the request to the server.
Used for POST requests

setRequestHeader() Adds a label/value pair to the header to be sent

XMLHttpRequest Object Properties

Property Description

onreadystatechange
Defines a function to be called when the
readyState property changes

readyState

Holds the status of the XMLHttpRequest.
0: request not initialized
1: server connection established
2: request received

79 | P a g e

3: processing request
4: request finished and response is ready

responseText Returns the response data as a string

responseXML Returns the response data as XML data

status

Returns the status-number of a request
200: "OK"
403: "Forbidden"
404: "Not Found"
For a complete list go to the Http Messages
Reference

statusText Returns the status-text (e.g. "OK" or "Not Found")

Send a Request To a Server

To send a request to a server, we use the open() and send() methods of

the XMLHttpRequest object:

xhttp.open("GET", "ajax_info.txt", true);
xhttp.send();

Method Description

open(method, url, async)

Specifies the type of request
method: the type of request: GET or POST
url: the server (file) location
async: true (asynchronous) or false (synchronous)

send() Sends the request to the server (used for GET)

send(string) Sends the request to the server (used for POST)

GET Requests

GET request:

xhttp.open("GET", "demo_get2.asp?fname=Henry&lname=Ford", true);
xhttp.send();

POST Requests

A simple POST request:

xhttp.open("POST", "ajax_test.asp", true);
xhttp.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");
xhttp.send("fname=Henry&lname=Ford");

AJAX - Server Response

he readyState property holds the status of the XMLHttpRequest.

The onreadystatechange property defines a function to be executed when the

readyState changes.

The status property and the statusText property holds the status of the

XMLHttpRequest object.

https://www.w3schools.com/tags/ref_httpmessages.asp
https://www.w3schools.com/tags/ref_httpmessages.asp

80 | P a g e

Property Description

onreadystatechange Defines a function to be called when the readyState property changes

readyState

Holds the status of the XMLHttpRequest.
0: request not initialized
1: server connection established
2: request received
3: processing request
4: request finished and response is ready

status

200: "OK"
403: "Forbidden"
404: "Page not found"
For a complete list go to the Http Messages Reference

statusText Returns the status-text (e.g. "OK" or "Not Found")

The onreadystatechange function is called every time the readyState changes.

When readyState is 4 and status is 200, the response is ready:

function loadDoc() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 document.getElementById("demo").innerHTML =
 this.responseText;
 }
 };
 xhttp.open("GET", "ajax_info.txt", true);
 xhttp.send();
}

PHP Introduction

What is PHP?

 PHP is an acronym for "PHP: Hypertext Preprocessor"

 PHP is a widely-used, open source scripting language

 PHP scripts are executed on the server

 PHP is free to download and use

 PHP is an amazing and popular language!

It is powerful enough to be at the core of the biggest blogging system on the web (WordPress)!

It is deep enough to run the largest social network (Facebook)!

It is also easy enough to be a beginner's first server side language!

What is a PHP File?

 PHP files can contain text, HTML, CSS, JavaScript, and PHP code

 PHP code is executed on the server, and the result is returned to the browser as plain HTML

 PHP files have extension ".php"

 What Can PHP Do?

 PHP can generate dynamic page content

 PHP can create, open, read, write, delete, and close files on the server

 PHP can collect form data

 PHP can send and receive cookies

https://www.w3schools.com/tags/ref_httpmessages.asp

81 | P a g e

 PHP can add, delete, modify data in your database

 PHP can be used to control user-access

 PHP can encrypt data

With PHP you are not limited to output HTML. You can output images, PDF files, and even Flash
movies. You can also output any text, such as XHTML and XML.

Why PHP?

 PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)

 PHP is compatible with almost all servers used today (Apache, IIS, etc.)

 PHP supports a wide range of databases

 PHP is free. Download it from the official PHP resource: www.php.net

 PHP is easy to learn and runs efficiently on the server side

 What's new in PHP 7

 PHP 7 is much faster than the previous popular stable release (PHP 5.6)

 PHP 7 has improved Error Handling

 PHP 7 supports stricter Type Declarations for function arguments

 PHP 7 supports new operators (like the spaceship operator: <=>)

Setup and Installation

Since PHP is a server-side technology, you should naturally expect to invest some time in setting up
a server environment for production, development or learning. To be frank, PHP is quite easy to set
up compared to other monsters like J2EE. Nevertheless, the procedures are complicated by the
various combinations of different versions of web server, PHP and database (most often MySQL).
Below I will introduce the steps needed to set up a working PHP environment with MySQL
database.

Linux

 If your desktop runs on Linux, chances are that Apache, PHP, and MySQL are already
installed for you. This wildly popular configuration is commonly referred to as LAMP, i.e.
Linux Apache MySQL PHP, or P, the latter 'P', can also refer to Perl another major player in
the opensource web service arena. If some components are not installed, you will likely have
to manually install the following packages:

Apache or Lighttpd

PHP

MySQL or Postgres

The PHP integration plugin for the database.

Debian or its derivatives

On Debian or its derivatives, Ubuntu included[1], you can use the corresponding commands:

apt-get install php5

Server

If you wish to use Apache apt-get install apache2

-or-

If you wish to use Lighttpd apt-get install lighttpd

Database

If you wish to use Postgres

apt-get install postgres-server postgres-client php5-pg

-or-

82 | P a g e

If you wish to use Mysql

apt-get install mysql-server mysql-client php5-mysql

^ If you chose to use Ubuntu with Apache and MySQL you might wish to utilize the Ubuntu
community site for such a configuration ubuntu lamp wiki.

Gentoo

For Gentoo Linux users, the gentoo-wiki has this HowTo available: Apache2 with PHP and

MySQL.

In general, you'll want to do the following under Gentoo:

emerge apache emerge mysql emerge mod_php

RPM-based

The exact procedures depend on your Linux distribution. On a Fedora system, the commands are
typically as follows:

yum install httpd yum install php yum install mysql

yum install php-mysql

It's impossible to cover all the variants here, so consult your Linux distribution's manual for more
details, or grab a friend to do it for you.

One sure-fire way of getting PHP up and running on your *nix system is to compile it from source.
This isn't as hard as it may sound and there are good instructions available in the PHP manual.

Windows

Contrary to what some people may think, PHP on Windows is a very popular option. On a Windows
platform, you have the option to use either the open source Apache web server, or the native
Internet Information Services (IIS) server from Microsoft, which can be installed from your Windows
CD. When you have one of these servers installed, you can download and install the appropriate
PHP Windows binaries distributions from PHP download page. The installer version requires less
user-interaction.

For increased performance you will want to use FastCGI. There is a wikibook that will assist you on
Setting up IIS with FastCGI.

Databases

On Microsoft Windows you must always install your own database. Two popular choices are the
open source Postgres, and MySQL. Postgres is more liberally licensed, and is free to use for
commercial purposes.

Postgresql

Official Zend documentation: http://us.php.net/pgsql

Postgres is simple and easy to install, browse to http://www.postgresql.org/ftp/binary/v8.3.0/win32/
and download the exe and double-click.

83 | P a g e

MySQL

Official MySQL documentation: http://us.php.net/mysql

You might wish to install the MySQL database. You can download the Windows version of MySQL,
and follow the installation instructions. If you have PHP 4, you do not need to install the equivalence
of php-mysql on Linux, as MySQL support is built-in in Windows distributions of PHP. In PHP 5 you
will need to uncomment the following line in your php.ini file (that is, remove the ';' at the beginning
of the line):

;extension=php_mysql.dll

Bundled Package

If you find all the above too much a hassle, you have another option. Driven by the eternal desire to
do things the safe/easy way, several conveniently packaged AMP bundles of Apache/MySQL/PHP
can be found on the net. One of them is PHPTriad. Or, you can try Uniform Server. It is a small
WAMP Package. 1 click install and also easy to use. Same with XAMPP for Windows. And after
trying these out you can simply delete the directory and everything is clean. A number of portable
Windows AMP package choices are summarized at List of portable Web Servers.

Also, a package installer called WAMP is available. It simply installs Apache, PHP and

MySQL on windows with ease. http://www.en.wampserver.com/

Mac OS X

Mac OS X comes with Apache server as standard, and enabling it is as simple as checking the box
next to 'Personal Web Sharing' in the 'Sharing' section of System Preferences. Once you have done
this you can place files in /Library/WebServer/Documents to access them on your server. Mac OS X
does come with PHP but the installation lacks any significant quantity of extensions, so if you want
any you're going to have to install PHP yourself. You can do this by following the instructions in
Apple's Developer Connection, or you can download an automatic installer such as the ones
available at Entropy. Once you've done one of those, you'll have a server with PHP running on your
Mac.

To install MySQL just download and run the OS X installer package or use XAMPP for

MacOS X.

If you use unix or learning it, however, compiling might be the way to go for all three, or

just the ones you like. The advantage is that you can choose exactly which extensions you

want for PHP and Apache. Also you can choose which versions to compile together. To do this
make sure you have the Developer Tools installed. They are shipped with OS X.

How Do I Know My Setup is Working?

After you have successfully completed the previous section, it's time to make sure that everything
went well. You also get the chance to write your very first PHP scripts! Open your favourite plain text
editor (not Microsoft Word or another word processor), and type the following magical line:

<?php phpinfo(); ?>

Save it as phpinfo.php in your web server's root document directory. If you are using a web hosting
server, upload it to the server to where you would place HTML files. Now, open up your web

84 | P a g e

browser, and go to http://localhost/phpinfo.php, or http://your-web-hosting- server.com/phpinfo.php if
you are using a web hosting server, and look at the output.

Now scroll down that page and make sure there is a table with the title "mysql", and the top row
should read: "MySQL support: enabled". If your output does not have this, your particular installation
of PHP does not have MySQL support enabled. Note that this test doesn't tell you whether MySQL
server is running. You should fire up your MySQL client and check before you proceed.

Some dedicated php or script editors even have color coding of different words which can be very
useful for finding mistakes. A free implementation of this is the powerful Notepad++, available from
Sourceforge and licensed under the GPL.

Hello World

"Hello world." is the first program most beginning programmers will learn to write in any given
language. Here is an example of how to print "Hello world!" in PHP.

Code:

<?php

echo "Hello world!";

?>

Output: Hello world!

This is as basic as PHP gets. Three simple lines, the first line identifies that everything beyond the
<?php tag, until the ?> tag, is PHP code. The second line causes the greeting to be printed

(or echoed) to the web page. This next example is slightly more complex and uses variables.

Hello World With Variables

This example stores the string "Hello world!" in a variable called $string. The following lines show
various ways to display the variable $string to the screen.

PHP Code:

<?php

// Declare the variable 'string' and assign it a value.

// The
 is the HTML equivalent to a new line.

$string = 'Hello world!
';

// You can echo the variable, similar to the way you would echo a string.
echo $string;

// You could also use print. print $string;

// Or, if you are familiar with C, printf can be used too. printf('%s',
$string);

?>

PHP Output:

Hello world!
Hello world!
Hello world!

85 | P a g e

The previous example contained two outputs. PHP can output HTML that your browser will format
and display. The PHP Output box is the exact PHP output. The HTML Render box

is approximately how your browser would display that output. Don't let this confuse you, this is just
to let you know that PHP can output HTML. We will cover this much more in depth later.

Variables

Variables are the basis of any programming language: they are "containers" (spaces in memory)
which hold data. The data can change, thus it is "variable".

If you've had any experience with other programming languages, you know that in some of the
languages, you must define the type of data that the variable will hold. Those languages are called
statically-typed, because the types of variables must be known

before you store something in them. Programming languages such as C++ and Java are statically-
typed. PHP, on the other hand, is dynamically-typed, because the type of the variable is linked to
the value of the variable. You could define a variable for a string, store a string, and then replace the
string with a number. To do the same thing in C++, you would have to cast, or change the type of,
the variable, and store it in a different "container".

All variables in PHP follow the format of a dollar sign ($) followed by an identifier i.e.

$variable_name. These identifiers are case-sensitive, meaning that capitalization matters, so $wiki
is different from $Wiki.

Real world analogy

To compare a variable to real world objects, imagine your computer's memory as a storage shed. A
variable would be a box in that storage shed and the contents of the box (such as

a cup) would be the data in that variable.

If the box was labeled kitchen stuff and the box's contents were a cup, the PHP code would be:

$kitchen_stuff = 'cup';

If I then went into the storage shed, opened the box labeled kitchen stuff, and then replaced the cup
with a fork, the new code would be:

$kitchen_stuff = 'fork';

Notice the addition of the = in the middle and the ; at the end of the code block. The = is the
assignment operator, or in our analogy, instructions that came with the box that states "put the cup
in the box". The ; indicates to stop evaluating the block of code, or in our analogy, finish up with
what you are doing and move on to something else.

Also notice the cup was wrapped in single quotes instead of double. Using double quotes would tell
the PHP parser that there may be more than just a cup going into the box and to look for additional
instructions.

$bathroom_stuff = 'toothbrush';

$kitchen_stuff = "cup $bathroom_stuff";

//$kitchen_stuff contents is now ‘cup toothbrush'

Single quotes tell the PHP parser that it's only a cup and to not look for anything more. In this
example the bathroom box that should've had its contents added to the kitchen box has its name
added instead.

$bathroom_stuff = 'toothbrush';

$kitchen_stuff = 'cup $bathroom_stuff';

//$kitchen_stuff contents is now '''cup $bathroom_stuff'''

So again, try to visualize and associate the analogy to grasp the concept of variables with the
comparison below. Note that this is a real world object comparison and NOT PHP code.

86 | P a g e

Computer memory (RAM) = storage shed

Variable = a box to hold stuff

Variable name = a label on the box such as kitchen stuff

Variable data = the contents of the box such as a cup

Notice that you wouldn’t name the variable box, as the relationship between the variable and the
box is represented by the code>$ and how the data is stored in memory. For example a constant
and array can be considered a type of variable when using the box analogy as they all are
containers to hold some sort of contents, however, the difference is on how they are defined to
handle the contents in the box.

Variable: a box that can be opened while in the storage shed to exchange the contents in the box.

Constant: a box that cannot be opened to exchange its contents. Its contents can only be viewed
and not exchanged while inside the storage shed.

Array: a box that contains 1 or more additional boxes in the main box. To complicate matters for
beginners, each additional box may contain a box as well. In the kitchen stuff box we have two
boxes, the clean cup box

$kitchen_stuff["clean_cup"] = 'the clean cup';

and the dirty cup box

$kitchen_stuff["dirty_cup"] = 'the dirty cup'; More on variables, from the PHP
manual The print and echo statements

Print is the key to output. It sends whatever is in the quotes (or parentheses) which follow it to the
output device (browser window). A similar function is echo, but print allows the user to check
whether or not the print succeeded.

When used with quotation marks, as in:

print "Hello, World!";

The quoted text is treated as if it were a string, and thus can be used in conjunction with the
concatenation (joining two strings together) operator as well as any function that returns a string
value.

The following two examples have the same output. print "Hello, World!";

print "Hello" . ", " . "World!";

The dot symbol concatenates two strings. In other programming languages, concatenating a string
is done with the plus symbol and the dot symbol is generally used to call functions from classes.

Also, it might be useful to note that under most conditions echo can be used interchangably with
print. print returns a value, so it can be used to test if the print succeeded, while echo assumes
everything worked. Under most conditions there is nothing we can do if echo fails.

The following examples have the same output again. echo "Hello, World!";

and

echo "Hello" . ", " . "World!";

87 | P a g e

We will use echo in most sections of this book, since it is the more commonly used statement.

It should be noted that while echo and print can be called in the same way as functions, they are, in
fact, language constructs, and can be called without the brackets. Normal functions (almost all
others) must be called with brackets following the function identifier.

BASICS

The Examples

Example 1 - Basic arithmetic operators

This example makes use of the five basic operators used in mathematical expressions. These are
the foundation of all mathematical and string operations performed in PHP.

The five mathematical operators all function identically to those found in C++ and Java add (+)

subtract (-) multiply (*) divide (/) assign (=)

Examine this example. Each mathematical expression to the right of the assign operator is
evaluated, using the normal order of operations. When the expression has been

evaluated, the resultant value is assigned to the variable named to the left of the assign operator.

PHP Code:

<?php

$x = 25;

$y = 10;

$z = $x + $y;

echo $z;

echo "
";

$z = $x / $y;

echo $z;

echo "
";

$z = $y * $y * $x; echo $z - 1250; echo "
";

?>

PHP Output:

35
2.5
1250

HTML Render:

35

2.5

1250

Note: If you are not familiar with (X)HTML, you may not know the purpose of this part of the above
code:

echo "
";

Its purpose is to insert an HTML "line break" between the results, causing the browser to

88 | P a g e

display each result on a new line when rendering the page. In the absence of this line, the above
code would instead print: 352.51250

This is of course not the desired result.

There are two code options which perform the opposite of the assign (=) operator. The keyword null
should be used for variable nullification, which is actually used with the assign (=) operator in place
of a value. If you want to destroy a variable, the unset() language construct is available.

Examples:

$variable = null;

or unset($variable);

Example 2 - String concatenation

This example demonstrates the concatenation operator (.), which joins together two strings,
producing one string consisting of both parts. It is analogous to the plus (+) operator commonly
found in C++ string class (see STL), Python, Java, JavaScript implementations.

The statement

$string = $string . " " . "All the cool kids are doing it.";

prepends the current value of $string (which is "PHP is wonderful and great.") to the literal string "
All the cool kids are doing it." and assigns this new string to $string.

Code:

<?php

$string = "PHP is wonderful and great.";

$string = $string . " " . "All the cool kids are doing it.";

echo $string;

?>

Output:

PHP is wonderful and great. All the cool kids are doing it. Example 3 - Shortcut operators

This snippet demonstrates self-referential shortcut operators. The first such operator is the

++ operator, which increments $x (using the postfix form) by 1 giving it the value 2. After
incrementing $x, $y is defined and assigned the value 5.

The second shortcut operator is *=, which takes $y and assigns it the value $y * $x, or 10. After
initializing $z to 180, the subsequent line performs two shortcut operations. Going by

order of operations (see manual page below), $y is decremented (using the prefix form)

and divided into $z. $z is assigned to the resulting value, 20. Code:

<?php

$x = 1;

$x++;

echo $x . " ";

$y = 5;

$y *= $x;

echo $y . " ";

$z = 180;

$z /= --$y;

echo $z;

?>

Output:

2 10 20

89 | P a g e

Note: The expanded version of the above code (without the shortcut operators) looks like this:

<?php

$x = 1;

$x = $x + 1;

echo $x . " ";

$y = 5;

$y = $y * $x;

echo $y . " ";

$z = 180;

$y = $y - 1;

$z = $z / $y;

echo $z;

?>

The output is the same as seen in the above example.

Operators

An operator is any symbol used in an expression used to manipulate data. The seven basic PHP
operators are:

= (assignment)

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (modulus)

. (concatenation)

In addition, each of the above operators can be combined with an assignment operation, creating
the operators below:

+= (addition assignment)

-= (subtraction assignment)

*= (multiplication assignment)

/= (division assignment)

%= (modulus assignment)

.= (concatenation assignment)

These operators are used when a variable is added, subtracted, multiplied or divided by a second
value and subsequently assigned to itself.

In other words, the statements

$var = $var + 5;

and

$var += 5;

are equivalent.

There are also increment and decrement operators in PHP.

++ (increment)

-- (decrement)

90 | P a g e

These are a special case of the addition and subtraction assignment operators.

This code uses the addition assignment operator to increment and decrement a variable.

Code:

$var = 0;

$var += 1;

echo "The incremented value is $var.\n";

$var -= 1;

echo "The decremented value is $var.\n";

Output:

The incremented value is 1. The decremented value is 0.

While this is perfectly legal in PHP, it is somewhat lengthy for an operation as common as this. It
can easily be replaced by the increment operator, shortening the statement.

This code snippet uses the increment and decrement operators to increase and decrease a
variable's value by one.

Code:

$var = 3;

$var++;

echo "The incremented value is $var.\n";

$var--;

echo "The decremented value is $var.\n";

Output:

The incremented value is 4. The decremented value is 3.

Using the increment operator makes your code slightly easier to read and understand.

For a more in-depth overview of PHP's operators, including an explanation of bitwise operators,
refer to the manual link below.

Newline and Other Special Characters

Both of the below examples make use of the newline character (\n) to signify the end of the current
line and the beginning of a new one.

The newline is used as follows: Code:

echo "PHP is cool,\nawesome,\nand great.";

Output: PHP is cool, awesome, and great.

Notice: the line break occurs in the output wherever the \n occurs in the string in the echo
statement. However, a \n does not produce a newline when the HTML document is displayed in a
web browser. This is because the PHP engine does not render the script. Instead, the PHP engine
outputs HTML code, which is subsequently rendered by the web browser. The linebreak \n in the
PHP script becomes HTML whitespace, which is skipped when the web browser renders it (much
like the whitespace in a PHP script is skipped when the PHP engine generates HTML). This does
not mean that the \n operator is useless; it can be used to add whitespace to your HTML, so if
someone views the HTML generated by your PHP script they'll have an easier time reading it.

In order to insert a line-break that will be rendered by a web browser, you must instead use the

 tag to break a line.

91 | P a g e

Therefore the statement above would be altered like so:

echo 'PHP is cool,
awesome
and great.';

The function nl2br() is available to automatically convert newlines in a string to
 tags. The
string must be passed through the function, and then reassigned:

PHP Code:

$string = "This\ntext\nbreaks\nlines.";

$string = nl2br($string);

print $string;

PHP Output: This
 text
 breaks
 lines.

HTML Render: This

text breaks lines.

Additionally, the PHP output (HTML source code) generated by the above example includes
linebreaks.

Other special characters include the ASCII NUL (\0) - used for padding binary files, tab (\t)

- used to display a standard tab, and return (\r) - signifying a carriage return. Again, these
characters do not change the rendering of your HTML since they add whitespace to the HTML
source. In order to have tabs and carriage returns rendered in the final web page,

&tab; should be used for tabs and
 should be used for a carriage return.

Input to PHP

PHP has a set of functions that retrieve input. If you are using stanard input (such as that from a
command-line), it is retrieves using the basic input functions:

Reading from standard input:

$mystring = fgets($stdin);

Or:

$stdin = fopen('php://stdin', 'r'); // opens standard input

$line = fgets($stdin); // reads until user presses ENTER

Webservers

On webservers, information sent to a PHP app may either be a GET operation or a POST

operation.

For a GET operation, the parameters are sent through the address bar. Parameters within the bar
may be retrieves by using accessing $_GET['parameter']. On a POST operation, submitted input is
accessed by $_POST['parameter'].

A more generic array, $_REQUEST['parameter'] contains the contents of both $_GET,

$_POST, and $_COOKIE.

92 | P a g e

Comments

As you write more complex scripts, you'll see that you must make it clear to yourself and to others
exactly what you're doing and why you're doing it. Comments and "good" naming can help you
make clear and understandable scripts because:

When writing a script takes longer than a week, by the time you're done, you won't remember what
you did when you started, and you will most likely need to know.

Any script that is commonly used will need rewriting sooner or later. Rewriting is much easier (and
in many cases, made possible) when you write down what you did.

If you want to show someone your scripts, they should be nice and neat.

Comments are pieces of code that the PHP parser skips. When the parser spots a comment, it
simply keeps going until the end of the comment without doing anything. PHP offers both one line
and multi-line comments.

One-Line Comments

One-line comments are comments that start where ever you start them and end at the end of the
line. With PHP, you can use both // and # for your one-line comments (# is not commonly used).
Those are used mainly to tell the reader what you're doing the next few lines. For example:

//Print the variable $message echo $message;

It's important to understand that a one-line comment doesn't have to 'black out' the whole line, it
starts where ever you start it. So it can also be used to tell the reader what a certain variable does:

$message = ""; //This sets the variable $message to an empty string

The $message = ""; is executed, but the rest of the line is not.

Multi-Line Comments

This kind of comment can go over as many lines as you'd like, and can be used to state what a
function or a class does, or just to contain comments too big for one line. To mark the beginning of a
multiline comment, use /* and to end it, use */ . For example:

/* This is a

multiline comment And it will close When I tell it to.

*/

You can also use this style of comment to skip over part of a line. For example:

$message = ""/*this would not be executed*/;

Although it is recommended that one does not use this coding style, as it can be confusing in some
editors.

Naming

Naming your variables, functions and classes correctly is very important. If you define the following
variables:

$var1 = "PHP";

$var2 = 15;

They won't say much to anyone. But if you do it like this:

$programming_language = "PHP";

$menu_items = 15;

93 | P a g e

It would be much clearer. But don't go too far. $programming_language, for example is not a good
name. It's too long, and will take you a lot of time to type and can affect clarity. A better name may
be $prog_language, because it's shorter but still understandable. Don't forget to use comments as
well, to mark what every variable does.

$prog_language = "PHP"; //The programming language used to write this script

$menu_items = 15; //The maximum number of items allowed in your personal menu

Magic numbers

When using numbers in a program it is important that they have a clear meaning. For instance it's
better to define $menu_items early on instead of using 15 repeatedly without telling people what it
stands for. The major exception to this is the number 1; often programmers have to add or subtract
1 from some other number to avoid off-by-one errors, so 1 can be used without definition.

When you define numbers early on in their usage it also makes it easier to adjust the values later.
Again if we have 15 menu items and we refer to them ten times, it will be a lot easier to adjust the
program when we add a 16th menu item; just correct the variable definition and you have updated
the code in 10 places.

Spacing

PHP ignores extra spaces and lines. This means, that even though you could write code like this:

if($var == 1) {echo "Good";} else {echo "Bad";}

It's better like this: if($var == 1) { echo "Good";

} else {

echo "Bad";

}

Some programmers prefer this way of writing:

if($var == 1)

{

echo "Good";

}

else

{

echo "Bad";

}

You should also use blank lines between different portions of your script. Instead of

$var = 1;

echo "Welcome!
";

echo "How are you today?
";

echo "The answer: ";

if($var == 1) {

echo "Good";

} else {

echo "Bad";

}

94 | P a g e

You could write:

$var = 1;

echo "Welcome!
";

echo "How are you today?
";

echo "The answer: ";

if($var == 1) {

echo "Good";

} else {

echo "Bad";

}

And the reader will understand that your script first declares a variable, then welcomes the user, and
then checks the variable.

Arrays

Arrays are sets of data which can be defined in a PHP Script. Arrays can contain other arrays inside
of them without any restriction (hence building multidimensional arrays). Arrays can be referred to
as tables or hashes.

Arrays can be created in two ways. The first involves using the function array. The second involves
using square brackets.

The array function method

In the array function method, you create a array in the scheme of:

$foo = bar()

For example, to set the array up to make the keys sequential numbers (Example: "0, 1, 2,

3"), you use:

$foobar = array($foo, $bar);

This would produce the array like this:

$foobar[0] = $foo

$foobar[1] = $bar

It is also possible to define the key value:

$foobar = array('foo' => $foo, 'bar' => $bar);

This would set the array like this:

$foobar['foo'] = $foo

$foobar['bar'] = $bar

The square brackets method

The square brackets method allows you to set up by directly setting the values. For example, to
make $foobar[1] = $foo, all you need to do is:

$foobar[1] = $foo;

95 | P a g e

The same applies for setting the key value:

$foobar['foo'] = $foo; Examples of Arrays

Example #1

This example sets and prints arrays.

PHP Code:

<?php

$array =

array("name"=>"Toyota","type"=>"Celica","colour"=>"black","manufactured"=>
"1991");

$array2 = array("Toyota","Celica","black","1991");

$array3 = array("name"=>"Toyota","Celica","colour"=>"black","1991");

print_r($array); print_r($array2); print_r($array3);

?>

PHP Output: Array

(

[name] => Toyota [type] => Celica [colour] => black

[manufactured] => 1991

)

Array

(

[0] => Toyota [1] => Celica [2] => black [3] => 1991

)

Array

(

[name] => Toyota [0] => Celica [colour] => black [1] => 1991

)

Array ([name] => Toyota [type] => Celica [colour] => black [manufactured] => 1991) Array ([0] =>
Toyota [1] => Celica [2] => black [3] => 1991) Array ([name] => Toyota [0] => Celica [colour] =>
black [1] => 1991)

Example #2

The following example will output the identical text as Example #1:

<?php

$array['name']="Toyota";

$array['type']="Celica";

$array['colour']="black";

$array['manufactured']="1991";

$array2[]="Toyota";

$array2[]="Celica";

$array2[]="black";

$array2[]="1991";

$array3['name']="Toyota";

$array3[]="Celica";

$array3['colour']="black";

$array3[]="1991";

print_r($array); print_r($array2); print_r($array3);

?>

96 | P a g e

Example #3

Using the Example #1 and Example #2 above, now you can try and use arrays the same way as
normal variables:

PHP Code:

<?php

echo "Manufacturer: {$array['name']}
\n";

echo "Brand: {$array2['1']}
\n";

echo "Colour: ".$array3['colour']."
\n";

echo "Year Manufactured: ".$array3[1]."
\n"

?>

PHP Output:

Manufacturer: Toyota
 Brand: Celica

Colour: black

Year Manufactured: 1991

HTML Render: Manufacturer: Toyota Brand: Celica

Colour: black

Year Manufactured: 1991

Multidimensional Arrays

Elements in an array can also be an array, allowing for multidimensional arrays. An example, in
accordance with the motoring examples above, is:

<?php

$cars = array(

"car1" => array("make" => "Toyota","colour" => "Green","year" =>
1999,"engine_cc" =>

1998),

"car2" => array("make" => "BMW","colour" => "RED","year" =>
2005,"engine_cc" =>

2400),

"car3" => array("make" => "Renault","colour" => "White","year" =>
1993,"engine_cc" =>

1395),

);

?>

In this example, if you were to use:

<?php

echo "$cars['car1']['make']
";

echo "$cars['car3']['engine_cc']";

?>

The output would be: Toyota

1395

97 | P a g e

Array Functions

There exist dozens of array manipulation functions. Before implementing your own, make sure it
doesn't already exist as a PHP function in Array functions (PHP manual entry).

Array traversal

In various circumstances, you will need to visit every array element and perform a task upon it.

The simplest and the most widely used method for this is the foreach operator which loops through
the whole array and works individually with each key/item couple. If a more complex way of
traversing the array is needed, the following functions operate using the internal array pointer:

reset - sets the internal pointer to the first element and returns the first element prev - sets the
internal pointer to the previous element and returns it

current - returns the current element; does not change the internal pointer next - sets the internal
pointer to the next element and returns it

each - returns the current element; then sets the internal pointer to the next element end - sets the
internal pointer to the last element and returns the last element

<?php

// using an array's iterator to print its values in reverse order

$my_array = array('a', 'b', 'c');

end($my_array);

while($i = current($my_array)) { echo $i."\n"; prev($my_array);

}

?>

Another possibility is defining a function and applying it to each array element via one of the
following functions:

array_walk - applies a function to each array element

array_walk_recursive - same, but if the element is itself an array, it will traverse that array too

Control structures

if structure

The if Statement

Conditional structures are used to control which statements get executed. They are composed of
three fundamental elements:

if statements;

elseif statements; and else statements.

Conditionals in PHP are structured similarly to those found in C++ and Java. The structure begins
with an if clause, which is composed of the word "if" followed by a true/false statement in
parentheses (). The subsequent code will be contained in a block, denoted by curly braces { }.
Sometimes the braces are omitted, and only one line will follow the if statement. elseif and else
clauses sometimes occur after the if clause, to test for different statements.

The if clause says "If this statement is true, I want the program to execute the following statements.
If it is false, then ignore these statements." In technical terms, it works like this: When an if
statement is encountered, the true/false statement in parentheses is evaluated. If the statement is
found to be true, the subsequent block of code contained in curly braces is executed. However, if
the statement is found to be false, the program skips those lines and executes the next non-blank
line.

98 | P a g e

Following the if clause are two optional clauses: else and elseif. The elseif clause says "If the last
statement was false, let's see if this statement is true. If it is, execute the following code. If it isn't,
then skip it." elseif statements are only evaluated when the preceding if statement comes out to be
false. Otherwise they are skipped. Other than that, the elseif clause works just like a regular if
clause. If it is true, its block is executed, if not, its block is skipped.

Finally, the else clause serves as a "catch-all" for an if statement. Essentially the else statement
says "If all of the preceding tests fail, then execute this code."

Example 1

<?php

$foo = 1;

$bar = 2;

if($foo == $bar) {

echo "$foo is equal to $bar.";

} elseif ($foo > $bar) {

echo "$foo is greater than $bar.";

} else {

echo "$foo is less than $bar.";

}

?>

Example 2

<?php

$lower = 10;

$upper = 100;

$needle = 25;

if(($needle >= $lower) && ($needle <= $upper)) {

echo "The needle is in the haystack.";

} else if(($needle <= $lower) || ($needle >= $upper)) {

echo "The needle is outside of the haystack.";

}

?>

Conditional Expressions

Conditional Values function via basic formal logic. It is important to understand how the if clause,
among other clauses, evaluates these conditional values.

It is easiest to examine such with boolean values in mind, meaning that the result of a conditional
value will be either TRUE or FALSE and not both. For example, if variable $x =

4, and a conditional structure is called with the expression if($x == 4), then the result of the
expression will be TRUE, and the if structure will execute. However, if the expression is ($x

== 0), then the result will be FALSE, and the code will not execute. This is simple enough.

This becomes more complicated when complex expressions are considered. The two basic
operators that expressions can be conjoined with are the AND (&&) and OR (||).

99 | P a g e

Examples

We are given variables $x and $y.

$x = 4;

$y = 8;

Given the complex expression: ($x == 4 AND $y == 8)

We are given a result of TRUE, because the result of both separate expressions are true. When
expressions are joined with the AND operator, both sides MUST be true for the whole expression to
be true.

Similarly:

($x == 4 OR $y == 8)

We are given a result of TRUE as well, because at least one expression is true. When expressions
are joined with the OR operator, at least one side MUST be true for the whole expression to be true.

Conversely,

($x == 4 AND $y == 10)

This expression will return FALSE, because at least one expression in the whole is false. However,

($x == 4 OR $y == 10)

This expression will return TRUE, because at least one expression in the whole is true.

Code Blocks

A code block is one or more statements or commands that are contained between a pair of curly
braces { }. Blocks are used primarily in loops, conditionals and functions. Blocks can be nested
inside one another, for instance as an if structure inside of a loop inside of a function.

If, after one of the conditional statements, there is no block of code enclosed by curly braces, only
the next statement will be executed. It is recommended that you avoid using this to help prevent
accidents when adding extra code after the block.

The following code will not work as intended:

if(FALSE)

echo 'FALSE evaluates to true.';

echo 'Who knew that FALSE was TRUE?';

The second echo statement was executed, despite the if clause. The lack of brackets caused the if
statement to only apply to the first statement, making the second statement evaluate regardless of
the outcome of the if statement.

To avoid this problem, make sure to use brackets with conditional statements, even if there is only a
single line of code to be executed. This prevents the error in the above code from occurring when
you add an extra line after the existing block.

This code fixes the previous bug.

if(FALSE)

{

echo 'FALSE evaluates to true.';

echo 'Who knew that FALSE was TRUE?';

}

100 | P a g e

Switch Cases structure

Here's an example of a simple game where a user enters a $user_command and different functions
are run as a result:

if($user_command == "n")

{

go_north();

}

else if($user_command == "e")

{

go_east();

}

else if($user_command == "s")

{

go_south();

}

else if($user_command == "w")

{

go_west();

}

else

{

do_something_else();

}

Clearly, there's a lot of repeated code here. The switch case structure allows you to avoid this
redundant code. It allows programmers to repeatedly compare the value of a certain variable to a
list of possible values and execute code based on the result. This is the syntax for a switch case
statement, compared to the same code written using if statements:if statement style switch
case style

if($firstvariable == 'comparison1'

|| $firstvariable == 'comparison2')

{

doSomething();

doSomethingElse();

}

else if ($firstvariable == 'comparison3')

{

doAThirdThing();

}

else

{

launchMissiles();

} // Look at how much switch case saves you!

switch($firstvariable)

{

case 'comparison1': case 'comparison2': doSomething();

doSomethingElse();

break;

case 'comparison3': doAThirdThing(); break;

default: launchMissiles(); break;

}

101 | P a g e

The switch case style will save you from retyping $firstvariable, and make your code look cleaner
(especially if that code is a long chain of simple if statements). Returning to our zork sample
program, we have:Original Code Switch-Case Code

if($user_command == "n")

{

go_north();

}

else if($user_command == "e")

{

go_east();

}

else if($user_command == "s")

{

go_south();

}

else if($user_command == "w")

{

go_west();

}

else

{

do_something_else();

} switch($user_command)

{

case 'n': go_north(); break;

case 'e': go_east(); break;

case 's': go_south(); break;

case 'w':

go_west();

break; default: do_something_else(); break;

}

Syntax switch($var)

{

case [value]: [code]

break;

case [value]: [code]

break;

... default:

[code]

break;

}

In this example. $var is the first variable to be compared. This variable is then compared against
each case statement from the top down, until it finds a match. At that point, the code will excecute
until a break statement is reached (which will allow you to leave the case statement entirely).

102 | P a g e

Important Warning about Using Switch Case Statements

Don't forget to use break when you mean break! If you forget, you might run functions you don't
intend to. However, there are circumstances where leaving breaks out can be useful. Consider this
example:

switch ($n) {

case 0: case 1: case 2:

//only executes if $n is 0, 1 or 2 doSomethingForNumbers2OrSmaller(); break;

case 3:

//only executes if $n is 3 doSomethingForNumber3(); default:

//only executes if $n is 3 or above doSomethingForNumbers3OrBigger(); break;

}

This kind of coding is sometimes frowned upon, since it's not always as clear to see what the code
is meant to do. Also, consider commenting case statements that aren't supposed

to have a break; statement before the next case, so when others look at your code, they know not to
add a break.

While loop

<?php

$c = 0;

while ($c < 5) {

echo $c++;

} ?>

Example 2

<?php

$myName="Fred";

while ($myName!="Rumpelstiltskin") {

if ($myName=="Fred") {

$myName="Leslie";

}

else {

$myName="Rumpelstiltskin";

}

}

echo "How did you know?\n";

?>

 Analysis Example 1

This is an example that prints the numbers from 0 to 4. $c starts out as 0. When the while loop is
encountered, the expression $c < 5 is evaluated for truth. If it is true, then it executes what is in the
curly braces. The echo statement will print 0, and then add one to

$c. The program will then go back to the top of the loop and check the expression again. Since it is
true again, it will then return 1 and add one to $c. It will keep doing this until $c is equal to 5, where
the statement $c<5 is false. After that, it finishes.

103 | P a g e

Example 2

The first line of the program sets $myName to "Fred". After that, the while statement checks if
$myName equals "Rumpelstiltskin". The != means 'does not equal', so the expression is true, and
the while loop executes its code block. In the code block an if statement (see previous chapter)
checks if it equals Fred. Since it does, it then reassigns

$myName to equal "Leslie". Then it skips the else, since the if was true and evaluated. Then it
reaches the end of the loop, so it goes back and checks if $myName does not equal
"Rumpelstiltskin". Since it still doesn't, it's true, and then it goes into the loop again. This time, the if
statement is false, so the else is executed. This sets $myName to "Rumplestiltskin". We again get to
the end of the loop, so it goes back, and checks. Since

$myName does equal "Rumpelstiltskin", the while condition is false, and it skips the loop and
continues on, where it echos, "How did you know?"

Loops

Loops are another important basic programming technique. Loops allow programs to execute the
same lines of code repeatedly, this is important for many things in programs. In PHP you often use
them to layout tables in HTML and other similar functions.

Infinite Loops

Loops can be very handy, but also very dangerous! Infinite loops are loops that fail to exit, causing
them to execute until the program is stopped. This is caused when no matter what occurs during the
loop, the condition will never become false and therefore never exit. For example, if Example 1
subtracted 1 from $c...

$c=0;

while ($c<5) {

$c--;

echo $c;

}

$c will always be less than 5, no matter what, so the loop will continue forever. This causes
problems for those of us who don't have infinite time (or computer memory!). So, in that case, let's
learn a handy dandy little bugger.

If you add 'break;' to a loop, the loop will end, no matter whether the condition is false or not.

Let's combine the two examples. Before moving on take a few moments to write out the steps this
program goes through and what its output is.

<?php

$c = 1;

$myName="Fred";

while ($myName!="Rumplestilskin") {

if ($myName=="Fred") {

$myName="Leslie";

}

else {

$myName="Marc";

}

$c++;

if ($c==3) {

break;

}

}

echo "You lose and I get your baby!\n";

?>

104 | P a g e

Do while loop.

The do while loop is similar in syntax and purpose to the while loop. The do/while loop construct
moves the test that continues the loop to the end of the code block. The code is executed at least
once, and then the condition is tested. For example:

<?php

$c = 6;

do {

echo 'Hi';

} while ($c < 5);

?>

Even though $c is greater than 5, the script will echo "Hi" to the page one time. PHP's do/while loop
is not commonly used.

The continue statement

The continue statement causes the current iteration of the loop to end, and continues execution
where the condition is checked - if this condition is true, it starts the loop again.

For loop

The for loop is one of the basic looping structures in most modern programming languages. Like the
while loop, for loops execute a given code block until a certain condition is met.

The basic syntax of the for loop in PHP is similar to the c syntax:

for([initialization]; [condition]; [step])

Initialization happens the first time the loop is run. It is used to initialize variables or perform other
actions that are to be performed before the first execution of the body of the loop.

The Condition is evaluated before each execution of the body of the loop; if the condition is true, the
body of the loop will be executed, if it is false, the loop is exited and program execution resumes at
the first line after the body of the loop.

Step specifies an action that is to be performed after each execution of the loop body. Consider this

for($i = 0; $i < 5; $i++)

{

echo($i . "
");

}

PHP Output:

0
1
2
3
4

HTML Render:

0

1

2

3

4

The loop can also be formatted without using concatenation, according to personal preference:

for($i = 0; $i < 5; $i++)

{

echo "$i
";

}

105 | P a g e

Explanation

The variable $i is initialized as 0. When the loop ran once for the first time, it printed the

original value of $i, 0. Each time the loop ran, it incremented $i, then checked to see if $i was still
less than 5. If it was, it continued looping. When $i finally reached 5, it was no longer less than 5, so
PHP stopped looping and went to the next line after the loop code block (none, in this case).

Do note that the Initialization, Condition and Step of the For-loop can be empty. In this case, you will
get an infinite loop, unless you use the "break" keyword inside the loop somwhere.

Also note that the Initialization and Step parts of the For-loop can hold more than one instruction.
More info can be found via the link to the PHP manual at the end of this page.

Using FOR loops to traverse arrays

In the section on while loops the sort() example uses a while loop to print out the contents of the
array. Generally programmers use for loops for this kind of job.

NOTE: Use of indices like below is highly discouraged. Use the key-value for-loop construct.

$menu = array("Toast and Jam", "Bacon and Eggs", "Homefries", "Skillet", "Milk and

Cereal");

// note to self: get breakfast after writing this article

$count = count($menu);

for($i = 0; $i < $count; $i++)

{

echo($i + 1 . ". " . $menu[$i] . "
");

}

Again, this can be formatted without concatenation if you prefer:

for($i = 0; $i < $count; $i++)

{

$j=$i+1;

echo "$j. {$menu[$i]}
";

}

$count = count($menu);

We define the count before the for loop for more efficient processing. This is because each time the
for loop is run (whilst $i < $count) it evaluates both sides of the equation and executes any
functions. If we put $i < count($menu), This would evaluate count($menu) each time the process is
executed which is costly when dealing with large arrays.

for($i = 0; $i < $count; $i++)

This line sets up the loop. It initializes the counter, $i, to 0 at the start, adds one every time the loop
goes through, and checks that $i is less than the size of the array.

{

echo($i + 1 . ". " . $menu[$i] . "
");

}

The echo statement is pretty self-explanatory, except perhaps the bit at the start, where we echo

$i + 1. We do that because, as you may recall, arrays start at 0 and end at n - 1 (where n is their
length), so to get a numbered list starting at one, we have to add one to the counter each time we
print it.

106 | P a g e

Of course, as I mentioned before, both pieces of code produce the following output:

1. Toast and Jam

2. Bacon and Eggs

3. Homefries

4. Skillet

5. Milk and Cereal

Foreach loop

1 The Code

2 Analysis

2.1 simple foreach statement

2.2 foreach with key values

foreach ($array as $someVar) {

echo ($someVar . "
");

}

or:

foreach ($array as $key => $someVar) {

echo ($key."holds the value ".$someVar."
");

}

The foreach loop is a special form of the standard for loop. The example above will print all the
values of $array. The foreach structure is a convenient way to loop through an array.

simple foreach statement

Foreach loops are useful when dealing with an array indexed with arbitrary keys (e.g. non- numeric
ones):

$array = array(

"1st" => "My House", "2nd" => "My Car", "3rd" => "My Lab"

);

To use the classical for structure, you'd have to write:

// get all the array keys

$arrayKeys = array_keys($array);

// loop through the keys

for ($i=0; $i<count($array); $i++) {

// get each array value using its key echo $array[($arrayKeys[$i])] . "
";

}

Basically, an array value can be accessed only from its key: to make sure you get all the values, you
first have to make a list of all the existings keys then grab all the corresponding values. The access
to first aray value, the previous example does the following steps:

$firstKey = $arrayKeys[0]; // which is '1st'

$firstValue = $array[$firstKey]; // which is 'My House' ($array('1st'))

The foreach structure does all the groundwork for you:

foreach ($array as $someVar) {

echo $someVar . "
";

}

107 | P a g e

Note how the latter example is easier to read (and write). Both will output: My House

My Car

My Lab

foreach with key values

If you need to use the array keys in your loop, just add the variable as in the following statement:

foreach ($array as $myKey => $value) {

// use $myKey

}

Note that this is very usefull when constructing a dropdown list in HTML. You can use a foreach-
loop to have the $myKey variable inserted into the value="..." part and the $value as the actuall text.

This form mimics the way we used custom keys for $array elements. It will not only assign the
elements of $array to $someVar, but also assign the keys of those elements to $i.

<?php

$array = array("1st" => "My House", "2nd" => "My Car", "3rd" => "My Lab");

foreach ($array as $i => $someVar) {

echo $i . ": " . $someVar . "
\n";

}

?>

PHP Output:

1st: My House

2nd: My Car

3rd: My Lab

HTML Render:

1st: My House

2nd: My Car

3rd: My Lab

Note that if you change the assigned variable inside the foreach loop, the change will not be
reflected to the array. Therefore if you need to change elements of the array you need to change
them by using the array key.

Example:

$array = array(

"1st" => "My House", "2nd" => "My Car",

"3rd" => "My Lab"

);

foreach ($array as $i => $someVar) {

// OK

if($someVar == 'My Lab')

$array[$i] = 'My Laboratory';

// doesn't update the array

$someVar = 'Foo';

}

108 | P a g e

Functions

Functions (often called methods) are a way to group common tasks or calculations to be re-used
easily.

Functions in computer programming are much like mathematical functions: You can give the
function values to work with and get a result without having to do any calculations yourself.

You can also find a huge list of predefined functions built into PHP in the PHP Manual's function
reference.

Note that echo is not a function. "Calling a function" means causing a particular function to run at a
particular point in the script. The basic ways to call a function include:

calling the function to write on a new line (such as after a ";" or "}")

print('I am Naresh, I am.');

calling the function to write on a new line inside a control

<?php

if ($a==72){

print('I am Naresh, I am.');

}

?>

assigning the returned value of a function to a variable "$var = function()"

<?php

$result = sum ($a, 5);

?>

calling a function inside the argument parentheses (expression) of a control

<?php

while ($i < count($one)){

}

?>

In our earlier examples we have called several functions. Most commonly we have called the
function print() to print text to the output. The parameter for echo has been the string we wanted
printed (for example print("Hello World!") prints "Hello World!" to the output).

If the function returns some information we assign it to a variable with a simple =:

$var1 = func_name(); [edit]

Parameters

Parameters are variables that exist only within that function. They are provided by the programmer
when the function is called and the function can read and change them locally (except for reference
type variables, which are changed globally - this is a more advanced topic).

When declaring or calling a function that has more than one parameter, you need to separate
between different parameters with a comma ','.

A function declaration can look like this:

function print_two_strings($var1, $var2)

{

echo $var1; echo "\n"; echo $var2; return NULL;

}

109 | P a g e

To call this function you must give the parameters a value. It doesn't matter what the value is, as
long as there is one.

function call: print_two_strings("hello", "world"); Output:

hello world

When declaring a function you sometimes want to have the freedom not to use all the parameters,
therefore PHP allows you to give them default values when declaring the function:

function print_two_strings($var1 = "Hello World", $var2 = "I'm Learning PHP")

{

echo($var1); echo("\n"); echo($var2);

}

These values will only be used if the function call does not include enough parameters. If there is
only one parameter provided then $var2 = "I'm Learning PHP".

function call: print_two_strings("hello"); Output:

hello

I'm Learning PHP

Another way to have a dynamic number of parameters is to use PHP's built-in
func_num_args, func_get_args, and func_get_arg functions.

function mean()

{

$sum = 0;

$param_count = func_num_args();

for ($i = 0; $i < $param_count; $i++)

{

$sum += func_get_arg($i);

}

$mean = $sum / $param_count;

echo "Mean: {$mean}";

return NULL;

}

Or:

function mean()

{

$sum = 0;

$vars = func_get_args();

for ($i = 0; $i < count($vars); $i++)

{

$sum += $vars[$i];

}

$mean = $sum / count($vars);

echo "Mean: {$mean}";

return NULL;

}

The above functions would calculate the arithmetic mean of all of the values passed to them and
output it. The difference is that the first function uses func_num_args and func_get_arg, while the
second uses func_get_args to load the parameters into an array. The output for both of them would
be the same. For example:

110 | P a g e

mean(35, 43, 3);

Output: Mean: 27

==Returning a value==test

This function is all well and good, but usually you will want your function to return some information.
Generally there are 2 reasons why a programmer would want information from a function:

The function does tasks such as calculations, and we need the result.

A function can return a value to indicate if the function encountered any errors. To return a value
from a function use the return() statement in the function.

function add_numbers($var1 = 0, $var2 = 0, $var3 = 0)

{

$var4 = $var1 + $var2 + $var3;

return $var4;

}

Example PHP script:

<?php

function add_numbers($var1 = 0, $var2 = 0, $var3 = 0)

{

$var4 = $var1 + $var2 + $var3;

return $var4;

}

$sum = add_numbers(1,6,9);

echo "The result of 1 + 6 + 9 is {$sum}";

?>

Result:

The result of 1 + 6 + 9 is 16

Notice that a return() statement ends the function's course. If anything appears in a function
declaration after the return() statement is executed, it is parsed but not executed. This can come in
handy in some cases. For example:

<?php

function divide ($dividee, $divider) {

if ($divider == 0) {

//Can't divide by 0. return false;

}

$result = $dividee/$divider;

return $result;

}

?>

Notice that there is no else after the if. This is due to the fact that if $divider does equal 0, the
return() statement is executed and the function stops.

111 | P a g e

If you want to return multiple variables you need to return an array rather than a single variable. For
example:

<?php

function maths ($input1, $input2) {

$total = ($input1 + $input2);

$difference = ($input1 - $input2);

$ret = array("tot"=>$total, "diff"=>$difference);

return $ret;

}

?>

When calling this from your script you need to call it into an array. For example:

<?php

$return=maths(10, 5);

?>

In this case $return['tot'] will be the total (eg 15), while $return['diff'] will be the difference

(5).

Runtime function usage

A developer can create functions inside a PHP script without having to use the function
name($param...) {} syntax. This can done by way of programming that can let you run functions
dynamically.

Executing a function that is based on a variable's name

There are two ways to do it, either using direct call or call_user_func or call_user_func_array:

Using call_user_func* functions to call functions

call_user_func and call_user_func_array only differ that the call_user_func_array allows you to use
the second parameter as array to pass the data very easily, and call_user_func has an infinite
number of parameters that is not very useful in a professional way. In these examples, a class will
be used for a wider range of using the example:

<?php

class Some_Class {

function my_function($text1,$text2,$text3) {

$return = $text1."\n\n".$text2."\n\n".$text3;

return $return;

}

}

$my_class=new Some_Class();

?>

112 | P a g e

Using call_user_func:

<?php

$one = "One";

$two = "Two";

$three = "Three";

$callback_func = array(&$my_class,"my_function");

$result = call_user_func($callback_func,$one,$two,$three);

echo $result;

?>

Using call_user_func_array:

<?php

$one = "One";

$two = "Two";

$three = "Three";

$callback_func = array(&$my_class,"my_function");

$result = call_user_func_array($callback_func,array($one,$two,$three));

echo $result;

?>

Note how call_user_func and call_user_func_array are used in both of the examples.
call_user_func_array allows the script to execute the function more dynamically.

As there was no example of using both of these functions for a non-class function, here they are:
Using call_user_func:

<?php

$one = "One";

$two = "Two";

$three = "Three";

$callback_func = "my_function";

$result = call_user_func($callback_func,$one,$two,$three);

echo $result;

?>

Using call_user_func_array:

<?php

$one = "One";

$two = "Two";

$three = "Three";

$callback_func = "my_function";

$result = call_user_func_array($callback_func,array($one,$two,$three));

echo $result;

?>

113 | P a g e

More complicated examples

<?php

$my_func($param1, $param2);

$my_class_name = new ClassObject();

$my_class_name->$my_func_from_that_class($param1, $param2);

// The -> symbol is a minus sign follow by a "larger then" sign. It allows you to use a function that is
defined in a different PHP class.

// It comes directly from Object-Oriented programming. Via a constructor, a function of that class is
executable.

// This specific example is a function that returns no values. call_user_func($my_func, $param1,
$param2);

call_user_func(array(&${$my_class_name}, $my_func), $param1, $param2);

call_user_func_array($my_func, array($param1, $param2));

// Most powerful, dynamic example

call_user_func_array(array(&${$my_class_name}, $my_func), array($param1, $param2));

?>

<?php

function positif ($x + $y;) {

$x=2;

$y=5;

$z = $x+$y;

echo $z;

}

positif=$x+$y;

?>

TODO: Somebody add what the & in codeline 5 means

Creating runtime functions

Creating runtime functions is a very good way of making the script more dynamic:

<?php

$function_name=create_function('$one, $two','return $one+$two;');

echo $function_name."\n\n";

echo $function_name("1.5", "2");

?>

create_function creates a function with parameters $one and $two, with a code to evaluate return...
When create_function is executed, it stores the function's info in the memory and returns the
function's name. This means that you cannot customise the name of the function although that
would be preferred by most developers.

114 | P a g e

Files

Working with files is an important part of any programming language and PHP is no different.
Whatever your reasons are for wanting to manipulate files, PHP will happily accommodate them
through the use of a handful of functions. You should have read and be comfortable with the
concepts presented in the first five sections of this book before beginning here.

Fopen() and Fclose()

Fopen() is the basis for file manipulation. It opens a file in a certain mode (which you specify) and
returns a handle. Using this handle you can read and/or write to the file, before closing it with the
fclose() function.

Example Usage

<?php

$Handle = fopen('data.txt', 'r'); // Open the file for reading fclose($Handle); // Close the file

?>

In the example above you can see the file is opened for reading by specifying 'r' as the mode. For a
full list of all the modes available to fopen() you can look at the PHP Manual page.

Opening and closing the file is all well and good but to perform useful operations you need to know
about fread() and fwrite().

When a PHP script finishes executing, all open files are automatically closed. So although

it is not strictly necessary to close a file after opening it, it is considered good programming practice
to do so.

Reading

Reading can be done a number of ways. If you just want all the contents of a file available to work
with you can use the file_get_contents() function. If you want each line of the file in an array you can
use the file() command. For total control over reading from files fread() can be used.

These functions are usually interchangeable and each can be used to perform each other's function.
The first two do not require that you first open the file with fopen() or then close it with fclose().
These are good for quick, one-time file operations. If you plan on performing multiple operations on
a file it is best to use fopen() in conjunction with fread(), fwrite() and fclose() as it is more efficient.

An example of using file_get_contents() Code:

<?php

$Contents = file_get_contents('data.txt');

echo $Contents;

?>

Output:

I am the contents of data.txt

This function reads the entire file into a string and from then on you can manipulate it as you would
any string.

115 | P a g e

An example of using file() Code:

<?php

$Lines = file('data.txt');

foreach($Lines as $Key => $Line) {

$LineNum = $Key + 1;

echo "Line $LineNum: $Line";

}

?>

Output:

Line 1: I am the first line of file

Line 2: I am the second line the of the file

Line 3: If I said I was the fourth line of the file, I'd be lying

This function reads the entire file into an array. Each item in the array corresponds to a line in the
file.

An example of using fread() Code:

<?php

$Handle = fopen('data.txt', 'r');

$String = fread($Handle, 64);

fclose($Handle);

echo $String;

?>

Output:

I am the first 64 bytes of data.txt (if it was ASCII encoded). I

This function can read up to the specified number of bytes from the file and return it as a string. For
the most part, the first two functions will be preferable but there are occasions when this function is
needed.

As you can see, with these three functions you are able to easily read data from a file into a form
that is convenient to work with. The next part shows how these functions can be used to do the jobs
of the others but this is optional. You may skip it and move onto the

Writing section if you are not interested.

.

<?php

$File = 'data.txt';

function DetectLineEndings($Contents) {

if(false !== strpos($Contents, "\r\n")) return "\r\n"; elseif(false !== strpos($Contents, "\r")) return "\r";
else return "\n";

}

/* This is equivalent to file_get_contents($File) but is less efficient */

$Handle = fopen($File, 'r');

$Contents = fread($Handle, filesize($File));

fclose($Handle);

116 | P a g e

/* This is equivalent to file($File) but requires you to check for the line-ending type. Windows
systems use \r\n, Macintosh \r and Unix \n. File($File) will automatically detect line-endings whereas
fread/file_get_contents won't */

$LineEnding = DetectLineEndings($Contents);

$Contents = file_get_contents($File);

$Lines = explode($LineEnding, $Contents);

/* This is also equivalent to file_get_contents($File) */

$Lines = file($File);

$Contents = implode("\n", $Lines);

/* This is equivalent to fread($File, 64) if the file is ASCII encoded */

$Contents = file_get_contents($File);

$String = substr($Contents, 0, 64);

?>

Writing

Writing to a file is done by using the fwrite() function in conjunction with fopen() and fclose(). As you
can see, there aren't as many options for writing to a file as there are for reading from one.
However, PHP 5 introduces the function file_put_contents() which simplifies the writing process
somewhat. This function will be discussed later in the PHP 5 section as it is fairly self-explanatory
and does not require discussion here.

The extra options for writing don't come from the amount of functions, but from the modes available
for opening the file. There are three different modes you can supply to the fopen() function if you
wish to write to a file. One mode, 'w', wipes the entire contents of the file so anything you then write
to the file will fully replace what was there before. The second mode, 'a' appends stuff to the file so
anything you write to the file will appear just after the original contents of the file. The final mode 'x'
only works for non-existent files. All

three writing modes will attempt to create the file if it doesn't exist whereas the 'r' mode will not.

An example of using the 'w' mode

Code:

<?php

$Handle = fopen('data.txt', 'w'); // Open the file and delete its contents

$Data = "I am new content\nspread across\nseveral lines.";

fwrite($Handle, $Data);

fclose($Handle);

echo file_get_contents('data.txt');

?>

Output:

I am new content spread across several lines.

An example of using the 'a' mode

Code:

<?php

$Handle = fopen('data.txt', 'a'); // Open the file for appending

$Data = "\n\nI am new content."; fwrite($Handle, $Data); fclose($Handle);

echo file_get_contents('data.txt');

?>

117 | P a g e

Output:

I am the original content. I am new content.

An example of using the 'x' mode

Code:

<?php

$Handle = fopen('newfile.txt', 'x'); // Open the file only if it doesn't exist

$Data = "I am this file's first ever content!";

fwrite($Handle, $Data);

fclose($Handle);

echo file_get_contents('newfile.txt');

?>

Output:

I am this file's first ever content!

Of the three modes shown above, 'w' and 'a' are used the most but the writing process is essentially
the same for all the modes.

Reading and Writing

If you want to use fopen() to open a file for both reading and writing all you need to do is put a '+' on
the end of the mode. For example, reading from a file requires the 'r' mode. If you want to read and
write to/from that file you need to use 'r+' as a mode. Similarly you can read and write to/from a file
using the 'w+' mode however this will also truncate the file to zero length. For a better description
visit the fopen() page which has a very useful table describing all the modes available.

Error Checking

Error checking is important for any sort of programming but when working with files in PHP it is
especially important. This need for error checking arises mainly from the filesystem the files are on.
The majority of webservers today are Unix-based and so, if you are using

PHP to develop web-applications, you have to account for file permissions. In some cases PHP may
not have permission to read the file and so if you've written code to read a particular file, it will result
in an ugly error. More likely is that PHP doesn't have permission to write to a file and that will again
result in ugly errors. Also, the file's existence is (somewhat obviously) important. When attempting
to read a file, you must make sure the file exists first. On the other side of that, if you're attempting
to create and then write to a file using the 'x' mode then you must make sure the file doesn't exist
first.

In short, when writing code to work with files, always assume the worst. Assume the file doesn't
exist and you don't have permission to read/write to it. In most cases this means you have to tell the
user that, in order for the script to work, he/she needs to adjust those file permissions so that PHP
can create files and read/write to them but it also means that your script can adjust and perform an
alternative operation.

There are two main ways of error checking. The first is by using the '@' operator to suppress any
errors when working with the file and then checking if the result is false or not. The second method
involves using more functions like file_exists(), is_readable() and is_writeable().

Examples of using the '@' operator

118 | P a g e

<?php

$Handle = @ fopen('data.txt', 'r');

if(!$Handle) {

echo 'PHP does not have permission to read this file or the file in question doesn\'t exist.';

} else {

$String = fread($Handle, 64);

fclose($Handle);

}

$Handle = @ fopen('data.txt', 'w'); // The same applies for 'a' if(!$Handle) {

echo 'PHP either does not have permission to write to this file or it does not have permission to
create this file in the current directory.';

} else {

fwrite($Handle, 'I can has content?');

fclose($Handle);

}

$Handle = @ fopen('data.txt', 'x');

if(!$Handle) {

echo 'Either this file exists or PHP does not have permission to create this file in the current
directory.';

} else {

fwrite($Handle, 'I can has content?');

fclose($Handle);

}

?>

As you can see, the '@' operator is used mainly when working with the fopen() function. It can be
used in other cases but is generally less efficient.

Examples of using specific checking functions

<?php

$File = 'data.txt';

if(!file_exists($File)) {

// No point in reading since there is no content

$Contents = '';

// But might want to create the file instead

$Handle = @ fopen($File, 'x'); // Still need to error-check ;)

if(!$Handle) {

echo 'PHP does not have permission to create a file in the current directory.';

} else {

fwrite($Handle, 'Default data');

fclose($Handle);

}

} else {

// The file does exist so we can try to read its contents if(is_readable($File)) {

$Contents = file_get_contents($File);

} else {

echo 'PHP does not have permission to read that file.';

}

}

119 | P a g e

if(file_exists($File) && is_writeable($File)) {

$Handle = fopen($File, 'w'); fwrite($Handle, 'I can has content?'); fclose($Handle);

}

?>

You can see by that last example that error-checking makes your code very robust. It allows it to be
prepared for most situations and behave accordingly which is an essential

aspect of any program or script.

Line-endings

Line-endings were mentioned briefly in the final example in the 'Reading' section of this chapter and
it is important to be aware of them when working with files. When reading from a text file it is
important to know what types of line-endings that file contains. 'Line- endings' are special characters
that try to tell a program to display a new line. For

example, Notepad will only move a piece of text to a new line if it finds "\r\n" just before the new line
(it will also display new lines if you put word wrap on).

If someone writes a text file on a Windows system, the chances are that each line will end with
"\r\n". Similarly, if they write the file on a Classic Macintosh (Mac OS 9 and under) system, each line
will probably end with "\r". Finally, if they write the file on a Unix-based system (Mac OS X and
GNU/Linux), each line will probably end with "\n".

Why is this important? Well, when you read a file into a string with file_get_contents(), the string will
be one long line with those line-endings all over the place. Sometimes they will get in the way of
things you want to do with the string so you can remove them with:

<?php

$String = str_replace(array("\n", "\r"), '', $String);

?>

Other times you may need to know what kind of line-ending is being used throughout the text in
order to be consistent with any new text you add. Luckily, in 99% of cases, the line- endings will
never change type throughout the text so the custom function

'DetectLineEndings' can be used as a quick way of checking:

<?php

function DetectLineEndings($String) {

if(false !== strpos($String, "\r\n")) return "\r\n"; elseif(false !== strpos($String, "\r")) return "\r"; else
return "\n";

}

?>

Most of the time though, it is just sufficient to be aware of their existence within the text so you can
adjust your script to cope properly.

Binary Safe

So far, all of the text seen in this chapter has been assumed to be encoded in some form of
plaintext encoding such as UTF-8 or ASCII. Files do not have to be in this format however and in
fact there exist a huge number of formats that are aren't (such as pictures or executables). If you
want to work with these files you have to ensure that the functions you are using are 'binary safe'.

120 | P a g e

Previously you would have to add 'b' to the end of the modes you used to tell PHP to treat the file as
a binary file. Failing to do so would give unexpected results and generally 'weird-looking' data.

Since about PHP 4.3, this is no longer necessary as PHP will automatically detect if it needs to open
the file as a text file or a binary file and so you can still follow most of the examples shown here.

Working with binary data is a lot different to working with plaintext strings and characters and
involves many more functions which are beyond the scope of this chapter however it is important
you know about these differences.

Serialization

Serialization is a technique used by programmers to preserve their working data in a format that can
later be restored to its previous form. In simple cases this means converting a normal variable such
as an array into a string and then storing it somewhere. That data can then be unserialized and the
programmer will be able to work with the array once again.

There is a whole chapter devoted to Serialization in this book as it is a useful technique to know how
to use effectively. It is mentioned here as one of the primary uses of serialization is to store data on
plain files when a database is not available. It is also used to store the state of a script and to cache
data for quicker access later and files are one of the preferred media for this storage.

In PHP, serialization is very easy to perform through use of the serialize() and unserialize()
functions. Here follows an example of serialization used in conjunction with file functions. An
example of storing user details in a file so that they can be easily retrieved later.

Code:

<?php

/* This part of the script saves the data to a file */

$Data = array(

'id' => 114,

'first name' => 'Foo',

'last name' => 'Bartholomew',

'age' => 21,

'country' => 'England'

);

$String = serialize($Data);

$Handle = fopen('data.dat', 'w'); fwrite($Handle, $String); fclose($Handle);

/* Then, later on, we retrieve the data from the file and output it */

$String = file_get_contents('data.dat');

$Data = unserialize($String);

$Output = '';

foreach($Data as $Key => $Datum) {

$Field = ucwords($Key);

$Output .= "$Field: $Datum\n";

}

echo $Output

?> Output:

Id: 114

121 | P a g e

First Name: Foo

Last Name: Bartholomew

Age: 21

Country: England

PHP 5

There is one particular function specific to files that was introduced in PHP 5. That was the
file_put_contents() function. It offers an alternative method of writing to files that does not exist in
PHP 4. To see how it differs, it is easiest to just look at an example.

Examples showing writing to a file in PHP 4 and the equivalent in PHP 5 with the file_put_contents()
function

<?php

$File = 'data.txt';

$Content = 'New content.';

// PHP 4, overwrite entire file with data

$Handle = fopen($File, 'w'); fwrite($Handle, $Content); fclose($Handle);

// PHP 5

file_put_contents($File, $Content);

// PHP 4, append to a file

$Handle = fopen($File, 'a'); fwrite($Handle, $Content); fclose($Handle);

// PHP 5

file_put_contents($File, $Content, FILE_APPEND);

?>

File_put_contents() will also attempt to create the file if it doesn't exist and it is binary safe. There is
no equivalent of the 'x' mode for file_get_contents().

File_put_contents() is almost always preferable over the fopen() method except when performing
multiple operations on the same file. It is more preferable to use it for writing than file_get_contents()
is for reading and for this reason, a function is provided here to emulate the behaviour of
file_put_contents() for PHP 4:

<?php if(!function_exists('file_put_contents')) {

function file_put_contents($File, $Data, $Append = false) {

if(!$Append) $Mode = 'w';

else $Mode = 'a';

$Handle = @ fopen($File, $Mode);

if(!$Handle) return false;

$Bytes = fwrite($Handle, $Data);

fclose($Handle);

return $Bytes;

}

}

?>

122 | P a g e

Mail

The mail function is used to send E-mail Messages through the SMTP server specified in the php.ini
Configuration file.

bool mail (string to, string subject, string message [, string additional_headers [, string
additional_parameters]])

The returned boolean will show whether the E-mail has been sent successfully or not. This example
will send message "message" with the subject "subject" to email address "example@domain.tld".
Also, the receiver will see that the eMail was sent from "Example2

<example2@domain.tld>" and the receiver should reply to "Example3

<example3@domain.tld>"

<?php mail(

"example@domain.tld", // E-Mail address

"subject", // Subject

"message", // Message

"From: Example2 <example2@domain.tld>\r\nReply-to: Example3

<example3@domain.tld>) // Additional Headers

;

?>

There is no requirement to write E-mail addresses in format "Name <email>", you can just write
"email".

This will send the same message as the first example but includes From: and Reply-To: headers in
the message. This is required if you want the person you sent the E-mail to be able to reply to you.
Also, some E-mail providers will assume mail is spam if certain headers are missing so unless you
include the correct headers your mail will end up in the junk mail folder.

Important notes

PHP by default does not have any mail sending ability itself. It needs to pass the mail to a local mail
transfer agent, such as sendmail. This means you cannot just run PHP by itself and expect it to
send mail; you must have a mail transfer agent installed.

Make sure you do not have any newline characters in the to or subject, or the mail may not be sent
properly.

However, the additional headers field -- which should always include the From: header -- may also
include other headers. On PHP for Windows, each header should be followed by

\r\n but on Unix versions, you should only include \r between header lines. Don't put \n or

\r\n after the final additional header line.

The to parameter should not be an address in the form of "Name

<someone@example.com>". The mail command may not parse this properly while talking with the
MTA (Particularly under Windows).

Error Detection

Especially when sending multiple emails, such as for a newsletter script, error detection is
important.

Use this script to send mail while warning for errors:

$result=@mail($to,$subject,$message,$headers);

if ($result) echo "Email sent successfully."

else echo "Email was not sent, as an error occurred."

123 | P a g e

Sending To Multiple Addresses Using Arrays

In the case below the script has already got a list of emails, we simply use the same procedure for
using a loop in PHP with mysql results. The script below will attempt to send an email to every
single email address in the array until it runs out.

while ($row = mysql_fetch_assoc($result)) {

mail($row['email'], $subject, $message, null,"-f$fromaddr");

}

Then if we integrate the error checking into the multiple email script we get the following

$errors = 0

$sent = 0

while ($row = mysql_fetch_assoc($result)) {

$result = "";

$result = @mail($row['email'], $subject, $message, null,"-f$fromaddr");

if (!$result) $errors = $errors + 1;

$sent = $sent + 1;

}

echo "You have sent $sent messages";

echo "However there were $errors messages";

Cookies

Cookies are small pieces of data stored as text on the client's computer. Normally cookies are used
only to store small amounts of data. Even though cookies are not harmful some people do not
permit cookies due to concerns about their privacy. In this case you have to use Sessions.

This lesson covers setting and retrieving data from cookies.

Setting a cookie

Setting a cookie is extremely easy with setcookie().

setcookie("test", "PHP-Hypertext-Preprocessor", time()+60, "/location",1);

Here the setcookie function is being called with four arguments (setcookie has 1 more optional
argument, not used here). In the above code, the first argument is the cookie name, the second
argument is the cookie contents and the third argument is the time after which the cookie should
expire in seconds (time() returns current time in seconds, there time()+60 is one minute from now).
The path, or location, element may be omitted, but it does allow you to easily set cookies for all
pages within a directory, although using this is not generally recommended.

You should note that since cookies are sent with the HTTP headers the code has to be at the top of
the page (Yes, even above the DOCTYPE declaration). Any other place will generate an error.

Retrieving cookie data

If a server has set a cookie the browser sends it to the server each time a page loads. The name of
each cookie sent by your server is stored in the superglobal array _COOKIE. So

124 | P a g e

in the above example the cookie would be retrieved by calling $_COOKIE['test']. To access data in
the cookie we use explode(). explode() turns a string into an array with a certain delimiter present in
the string. That is why we used those dashes(- hyphens) in the cookie contents. So to retrieve and
print out the full form of PHP from the cookie we use the code:

<?php

$array = explode("-", $_COOKIE['test']); //retrieve contents of cookie print("PHP stands for
".$array[0].$array[1].$array[2]); //display the content

?>

Note: $_COOKIE was Introduced in 4.1.0. In earlier versions, use

$HTTP_COOKIE_VARS.

Where are cookies used?

Cookies can be often used for:

user preferences

inventories

quiz or poll results shopping carts

user authentication

remembering data over a longer period

You should never store unencrypted passwords in cookies as cookies can be easily read by the
users.

You should never store critical data in cookies as cookies can be easily removed or modified by
users.

Sessions

Sessions allow the PHP script to store data on the web server that can be later used, even between
requests to different php pages. Every session has got a different identifier, which is sent to the
client's browser as a cookie or as a $_GET variable. Sessions end when the user closes the
browser, or when the web server deletes the session information, or when the programmer explicitly
destroys the session. In PHP it's usually called PHPSESSID. Sessions are very useful to protect the
data that the user wouldn't be able to read or write, especially when the PHP developer doesn't
want to give out information in the cookies as they are easily readable. Sessions can be controlled
by the $_SESSION superglobal. Data stored in this array is persistent throughout the session. It is a
simple array. Sessions are much easier to use than cookies, which helps PHP developers a lot.
Mostly, sessions are used for user logins, shopping carts and other additions needed to keep
browsing smooth. PHP script can easily control the session's cookie which is being sent and control
the

whole session data. Sessions are always stored in a unique filename, either in a temporary folder or
in a specific folder, if a script instructs to do so.

Using Sessions

At the top of each php script that will be part of the current session there must be the function
session_start(). It must be before the first output (echo or others) or it will result in an error
"Headers already sent out".

session_start();

125 | P a g e

This function will do these actions:

It will check the _COOKIE or _GET data, if it is given

If the session file doesn't exist in the session.save_path location, it will : Generate a new Unique
Identifier, and

Create a new file based on that Identifier, and

Send a cookie to the client's browser

If it does exist, the PHP script will attempt to store the file's data into _SESSION variable for further
use

Now, you can simply set variables in 2 different ways, the default method:

$_SESSION['example'] = "Test";

Or the deprecated method:

$example="Test";

session_register($example);

Both of the above statements will register the session variable $_SESSION['example'] as "Test".
The deprecated method should not be used, it is only listed because you can still see it in scripts
written by programmers that don't know the new one. The default method is preferred.

Session Configuration Options

PHP Sessions are easy to control and can be made even more secure or less secure with small
factors. Here are runtime options that can be easily changed using php_ini()

Function:Name Default Changeable

session.save_path "/tmp"
PHP_INI_ALL

session.name "PHPSESSID" PHP_INI_ALL

session.save_handler
session.auto_start "0"
session.gc_probability

"files" PHP_INI_ALL
PHP_INI_ALL

"1" PHP_INI_ALL

session.gc_divisor "100"
PHP_INI_ALL

session.gc_maxlifetime "1440"PHP_INI_ALL

session.serialize_handler "php"
PHP_INI_ALL

session.cookie_lifetime
session.cookie_path
session.cookie_domain
session.cookie_secure
session.use_cookies

"0"
"/"
""
""
"1"

PHP_INI_ALL
PHP_INI_ALL
PHP_INI_ALL
PHP_INI_ALL
PHP_INI_ALL
PHP_INI_ALL
PHP_INI_ALL

session.use_only_cookies "0"

session.referer_check
session.entropy_file""
session.entropy_length
session.cache_limiter
session.cache_expire
session.use_trans_sid
session.bug_compat_42

""

PHP_INI_ALL

126 | P a g e

"0" PHP_INI_ALL

"nocache" PHP_INI_ALL

"180" PHP_INI_ALL

"0"
"1"

PHP_INI_SYSTEM/PHP_INI_PERDIR
PHP_INI_ALL

session.bug_compat_warn "1" PHP_INI_ALL

session.hash_function "0" PHP_INI_ALL

session.hash_bits_per_character"4" PHP_INI_ALL

url_rewriter.tags "a=href,area=href,frame=src,input=src,form=fakeentry"

PHP_INI_ALL

A simple example of this use would be this code:

//Setting The Session Saving path to "sessions", must be protected from reading

session_save_path("sessions"); // This function is an alternative to

ini_set("session.save_path","sessions");

//Session Cookie's Lifetime (not effective, but use!)

ini_set("session.cookie_lifetime",time()+60*60*24*500);

//Change the Session Name from PHPSESSID to SessionID

session_name("SessionID");

//Start The session

session_start();

//Set a session cookie (Required for some browsers, as settings that had been done

before are not very effective

setcookie(session_name(), session_id(), time()+3600*24*365, "/");

This example simply sets the cookie for the next year

Ending a Session

When user clicks "Logout", or "Sign Off", you would usually want to destroy all the login data so
nobody could have have access to it anymore. The Session File will be simply deleted as well as
the cookie to be unset by:

session_destroy();

Using Session Data of Other Types

Simple data such as integers, strings, and arrays can easily be stored in the $_SESSION
superglobal array and be passed from page to page. But problems occur when trying to store the
state of an object by assignment. Object state can be stored in a session by using the serialize()
function. serialize() will write the objects data into an array which then can be stored in a
$_SESSION supergloblal. unserialize() can be used to restore the state of an object before trying to
access the object in a page that is part of the current session. If objects are to be used across
multiple page accesses during a session, the object definition must be defined before calling
unserialize(). Other issues may arise when serializing and unserializing objects.

Avoiding Session Fixation

Wikipedia has related information at

Session fixation

Session fixation describes an attack vector in which a malicious third-party sets (i.e. fixes) the
session identifier (SID) of a user, and is thus able to access that user's session. In the base-level
implementation of sessions, as described above, this is a very real vulnerability, and every PHP
program that uses sessions for anything at all sensitive should take steps

127 | P a g e

to remedy it. The following, in order of how widely applicable they are, are the measures to take to
prevent session fixation:

Do not use GET or POST variables to store the session ID (under most PHP configurations, a
cookie is used to store the SID, and so the programmer doesn't need to do anything to implement
this);

Regenerate the SID on each user request (using session_regenerate_id() at the beginning of the
session);

Use session time-outs: for each user request, store the current timestamp, and on the next request
check that the timeout interval has not passed;

Provide a logout function;

Check the 'browser fingerprint' on each request. This is a hash, stored in a $_SESSION variable,
comprising some combination of the user-agent header, client IP address, a salt value, and/or other
information. See below for more discussion of the details of this; it is thought by some to be nothing
more than 'security through obscurity'. [TODO]

Check referrer: this does not work for all systems, but if you know that users of your site must be
coming from some known domain you can discard sessions tied to users from elsewhere. Relies on
the user agent providing the Referrer header, which should not be assumed.

This example code addresses all of the above points save the referrer check.

$timeout = 3 * 60; // 3 minutes

$fingerprint = md5('SECRET-SALT'.$_SERVER['HTTP_USER_AGENT']);

session_start();

if ((isset($_SESSION['last_active']) && (time() > ($_SESSION['last_active']+$timeout)))

|| (isset($_SESSION['fingerprint']) && $_SESSION['fingerprint']!=$fingerprint)

|| isset($_GET['logout'])) {

do_logout();

}

session_regenerate_id();

$_SESSION['last_active'] = time();

$_SESSION['fingerprint'] = $fingerprint;

The do_logout() function destroys the session data and unsets the session cookie.

DATA BASES MySQL

MySQL is the most popular database used with PHP. PHP with MySQL is a powerful combination
showing the real power of Server-Side scripting. PHP has a wide range of MySQL functions
available with the help of a separate module. In PHP5, this module has been removed and must be
downloaded separately.

MySQL allows users to create tables, where data can be stored much more efficiently than the way
data is stored in arrays.

In order to use MySQL or databases in general effectively, you need to understand SQL, or
Structured Query Language.

Note that this page uses the mysqli functions and not the old mysql functions. How to - Step By Step

Connecting to the MySQL server

PHP has the function mysqli_connect to connect to a MySQL server which handles all of the low
level socket handling. We will supply 4 arguments; the first is the name of your MySQL server, the

128 | P a g e

second a MySQL username, third a MySQL password and last a database name. In this example, it
is assumed your server is localhost. If you are running a web server on one system, and MySQL on
another system, you can replace localhost with the IP address or domain name of the system which
MySQL resides on (ensure all firewalls are configured to open the appropriate ports).
mysqli_connect returns a

link_identifier that we can now use for communicating with the database. We will store this link in a
variable called $link.

<?php

$cxn = mysqli_connect ("localhost", "your_user_name", "your_password", "database_name");

?>

Running a Query

We have connected to the mysql server and then selected the database we want to use, now we
can run an SQL query over the database to select information, do an insert,

update or delete. To do this we use mysqli_query. This takes two arguments: the first is our
link_identifier and the second is an SQL query string. If we are doing a select sql

statement mysqli_query generates a resource or the Boolean false to say our query failed, and if we
are doing a delete, insert or update it generates a Boolean, true or false, to say if that was
successful or not.

The basic code for running a query is the php function "mysqli_query($cxn, $query)". The "$query"
argument is a MySQL query. The database argument is a database connection(here, the
connection represented by $cxn). For example, to return the query "SELECT * FROM customers
ORDER BY customer_id ASC", you could write

<?php

mysqli_query($cxn, "SELECT * FROM customers ORDER BY customer_id ASC");

?>

However, this straightforward method will quickly become ungainly due to the length of MySQL
queries and the common need to repeat the query when handling the return. All (or almost all)
queries are therefore made in two steps. First, the query is assigned a variable (conventionally, this
variable is named "$query" or "$sql_query" for purposes of uniformity and easy recognition), which
allows the program to call simply "mysqli_query($cxn, $sql_query)".

$sql_query = "SELECT * FROM customers ORDER BY customer_id ASC";

Secondly, to handle the information returned from the query, practical considerations require that
the information returned also be assigned to a variable. Again by convention rather than necessity
(i.e. you could name it anything you wanted), this information is often assigned to "$result", and the
function is called by the assignment of the variable.

It is important to understand that this code calls the function mysqli_query, in addition to assigning
the return to a variable "$result". [NOTE: The queries that ask for information -- SELECT, SHOW,
DESCRIBE, and EXPLAIN -- return what is called a resource. Other types of queries, which
manipulate the database, return TRUE if the operation is successful and FALSE if not, or if the user
does not have permission to access the table referenced.]

To catch an error, for debugging purposes, we can write:

<?php

$result = mysqli_query ($cxn, $sql_query);

or die (mysqli_error () . " The query was:" . $sql_query);

?>

129 | P a g e

If the function mysqli_query returns false, PHP will terminate the script and print an error report from
MySQL (such as "you have an error in your SQL syntax") and the query.

Thus, our final code would be, assuming that there were a database connection named

$cxn:

<?php

$sql_query = "SELECT * FROM customers ORDER BY customer_id ASC";

$result = mysqli_query ($cxn, $sql_query);

or die (mysqli_error () . " The query was:" . $sql_query);

?>

Putting it all together

In the previous sections we looked at 3 commands, but not at how to use them in conjunction with
each other. So let's take a look at selecting information for a table in our mysql database called
MyTable, which is stored in a mysql database called MyDB.

<?php

//Connect to the mysql server and get back our link_identifier

$link = mysql_connect ("your_database_host", "your_user_name",

"your_password");

//Now we select which database we would like to use mysql_select_db ("MyDB", $link);

//Our SQL Query

$sql_query = "Select * From MyTable";

//Run our sql query

$result = mysql_query ($sql_query, $link);

//Close Database Connection mysql_close ($link);

?>

Getting Select Query Information

Well that doesn’t help, because what are we to do with $result? Well when we do a select query we
select out information from a database we get back what is known as a resource, and that is what is
stored in $result, our resource identifier. A resource is a special type of PHP variable, but lets look
at how to access information in this resource.

We can use a function called mysql_fetch_assoc it takes one parameter, our resource identifier
$result, and generates an associative array corresponding to the fetched row. Each column in the
table corresponds to an index with the same name. We can now extract out information and print it
like so:

<?php

//Connect to the mysql server and get back our link_identifier

$link = mysql_connect("localhost", "your_user_name", "your_password")

or die('Could not connect: ' . mysql_error());

130 | P a g e

//Now we select which database we would like to use mysql_select_db("MyDB") or die('could not
select database');

//Our SQL Query

$sql_query = "Select * From MyTable";

//Run our sql query

$result = mysql_query($sql_query)or die('query failed'. mysql_error());

//iterate through result

while($row = mysql_fetch_assoc($result))

{

//Prints out information of that row print_r($row);

echo $row['foo'];

//Prints only the column foo.

}

// Free resultset (optional)

mysql_free_result($result);

//Close the MySQL Link mysql_close($link);

?>

PHP + MySQL + Sphinx

Once you understand the basics of how MySQL functions with PHP you might want to start learning
about full text search engines. Once your site gets large (millions of database records) MySQL
queries will start to get painfully slow, especially if you use them to search for text with wildcards
(ex:

WHERE content='%text%')

. There are many free/paid solutions to stop this problem.

A good open source full text search engine is Sphinx Search. There is a WikiBook on how to use it
with PHP and MySQL that explains the concepts of how Indexing works. You might want to read it
before reading the official documentation.

PostgreSQL

PostgreSQL is another popular database used with PHP.

The basic syntax of PostgreSQL is the same as that of MySQL, although some functions have been
renamed:

mysqli_connect becomes pg_connect

mysql_select_db is deprecated; it is specified in the pg_connect syntax mysqli_query becomes
pg_query

mysql_error becomes pg_last_error mysql_close becomes pg_close mysql_fetch_assoc becomes
pg_fetch_assoc mysql_free_result becomes pg_free_result

131 | P a g e

PHP Data Objects

PHP Data Objects, also known as PDO, is an interface for accessing databases in PHP without
tying code to a specific database. Rather than directly calling mysql_, mysqli_, and pg_ functions,
developers can use the PDO interface, simplifying the porting of applications to other databases.

The PHP Data Objects extension is currently included by default with installations of PHP 5.1. It is
available for users of PHP 5.0 through PECL, but does not ship with the base package.

PDO uses features of PHP that were originally introduced in PHP 5.0. It is therefore not available for
users of PHP 4.x and below.

Differences between PDO and the mysql extension

PHP Data Objects has a number of significant differences to the MySQL interface used by most
PHP applications on PHP 4.x and below:

 Object-orientation. While the mysql extension used a number of function calls that operated on a
connection handle and result handles, the PDO extension has an object-oriented interface.

 Database independence. The PDO extension, unlike the mysql extension, is designed to be
compatible with multiple databases with little effort on the part of the user, provided standard SQL is
used in all queries.

 Connections to the database are made with a Data Source Name, or DSN. A DSN is a string that
contains all of the information necessary to connect to a database, such as
'mysql:dbname=test_db'.

Intigration with (html,forms..etc)

Integrating PHP

"So," you say, "I now know the basics of this language. But, um... how do I use it?" I'm glad you
asked. There are quite a few ways that PHP is used. You already know that you can call a script
directly from a URL on your server. You can use PHP in more ways than that, though! Following are
a few methods that PHP can be called.

Forms

Forms are, by far, the most common way of interacting with PHP. As we mentioned before, it is
recommended that you have knowledge of HTML, and here is where we start using it. If you don't,
just head to the HTML Wikibook for a refresher.

Form Setup

To create a form and point it to a PHP document, the HTML tag <form> is used and an action is
specified as follows:

<form method="post" action="action.php">

<!-- Your form here -->

</form>

Once the user clicks "Submit", the form body is sent to the PHP script for processing. All fields in the
form are stored in the variables $_GET or $_POST, depending on the method used to submit the
form.

132 | P a g e

The difference between the GET and POST methods is that GET submits all the values in the URL,
while POST submits values transparently through HTTP headers. A general rule of thumb is if you
are submitting sensitive data, use POST. POST forms usually provide more security.

Remember $_GET and $_POST are superglobal arrays, meaning you can reference them
anywhere in a PHP script. For example, you don't need to call global $_POST or global

$_GET to use them inside functions.

Example

Let's look at an example of how you might do this.

<!-- Inside enterlogin.html -->

<html>

<head>

<title>Login</title>

</head>

<body>

<form method="post" action="login.php"> Please log in.

Username: <input name="username" type="text" />
 Password: <input name="password"
type="password" />

<input name="submit" type="submit" />

</form>

</body>

</html>This form would look like the following: Please log in. Username: …

Password: …

submit

And here's the script you'd use to process it (login.php):

<?php

// Inside enterlogin.html

if($_POST['username'] == "Spoom" && $_POST['password'] == "idontneednostinkingpassword")

{

echo("Welcome, Spoom.");

}

else

{

echo("You're not Spoom!");

}

?>

Let's take a look at that script a little closer. if($_POST['username'] == "Spoom" &&
$_POST['password'] == "idontneednostinkingpassword")

As you can see, $_POST is an array, with keys matching the names of each field in the form. For
backward compatibility, you can also refer to them numerically, but you generally shouldn't as this
method is much clearer. And that's basically it for how you use forms to submit data to PHP
documents. It's that easy.

133 | P a g e

For More Information

PHP Manual: Dealing with Forms

PHP from the Command Line

Although PHP was originally created with the intent of being a web language, it can also be used for
commandline scripting (although this is not common, because simpler tools such as the bash
scripting are available).

Output

You can output to the console the same way you would output to a webpage, except that you have
to remember that HTML isn't parsed (a surprisingly common error), and that you have to manually
output newlines. The typical hello world program would look like this:

<?php

print "Hello World!\n";

?>

Notice the newline character at the end-of-line - newlines are useful for making your output look
neat and readable.

Input

PHP has a few special files for you to read and write to the command line. These files include the
stdin, stdout and stderr files. To access these files, you would open these files as if they were actual
files using fopen, with the exception that you open them with the special php:// "protocol", like this:
$fp = fopen("php://stdin","r");

To read from the console, you can just read from stdin. No special redirection is needed to write to
the console, but if you want to write to stderr, you can open it and write to it: $fp =
fopen("php://stderr","w");

Bearing how to read input in mind, we can now construct a simple commandline script that asks the
user for a username and a password to authenticate himself.

<?php

$fp = fopen("php://stdin","r");

print "Please authenticate yourself\n";

print "Username: ";

// rtrim to cut off the \n from the shell

$user = rtrim(fgets($fp, 1024));

print "Password: ";

// rtrim to cut off the \n from the shell

$pass = rtrim(fgets($fp, 1024));

if (($user=="someuser") && ($pass=="somepass")) {

print "Good user\n";

// ... do stuff ...

} else die("Bad user\n");

fclose($fp);

?>

134 | P a g e

PHP MySQL Prepared Statements

Prepared Statements and Bound Parameters

A prepared statement is a feature used to execute the same (or similar) SQL statements repeatedly
with high efficiency.

Prepared statements basically work like this:

1. Prepare: An SQL statement template is created and sent to the database. Certain values are
left unspecified, called parameters (labeled "?"). Example: INSERT INTO MyGuests
VALUES(?, ?, ?)

2. The database parses, compiles, and performs query optimization on the SQL statement
template, and stores the result without executing it

3. Execute: At a later time, the application binds the values to the parameters, and the
database executes the statement. The application may execute the statement as many
times as it wants with different values

Compared to executing SQL statements directly, prepared statements have three main advantages:

 Prepared statements reduce parsing time as the preparation on the query is done only once
(although the statement is executed multiple times)

 Bound parameters minimize bandwidth to the server as you need send only the parameters
each time, and not the whole query

 Prepared statements are very useful against SQL injections, because parameter values,
which are transmitted later using a different protocol, need not be correctly escaped. If the
original statement template is not derived from external input, SQL injection cannot occur.

<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "myDB";

// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection
if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
}

// prepare and bind
$stmt = $conn->prepare("INSERT INTO MyGuests (firstname, lastname, email)
VALUES (?, ?, ?)");
$stmt->bind_param("sss", $firstname, $lastname, $email);

// set parameters and execute
$firstname = "John";
$lastname = "Doe";
$email = "john@example.com";
$stmt->execute();

$firstname = "Mary";
$lastname = "Moe";

135 | P a g e

$email = "mary@example.com";
$stmt->execute();

$firstname = "Julie";
$lastname = "Dooley";
$email = "julie@example.com";
$stmt->execute();

echo "New records created successfully";

$stmt->close();
$conn->close();
?>

This function binds the parameters to the SQL query and tells the database what the parameters
are. The "sss" argument lists the types of data that the parameters are. The s character tells mysql
that the parameter is a string.

The argument may be one of four types:

 i - integer
 d - double
 s - string
 b - BLOB

We must have one of these for each parameter.By telling mysql what type of data to expect, we
minimize the risk of SQL injections.

PHP libxml Functions
The libxml functions and constants are used together with SimpleXML, XSLT and DOM
functions.

Function Description

libxml_clear_errors() Clears the libxml error buffer

libxml_disable_entity_loader() Enables the ability to load external entities

libxml_get_errors() Gets the errors from the the libxml error buffer

libxml_get_last_error() Gets the last error from the the libxml error buffer

libxml_set_external_entity_loader() Changes the default external entity loader

libxml_set_streams_context()

Sets the streams context for the next libxml document
load or write

libxml_use_internal_errors()

Disables the standard libxml errors and enables user
error handling

https://www.w3schools.com/php/func_libxml_clear_errors.asp
https://www.w3schools.com/php/func_libxml_disable_entity_loader.asp
https://www.w3schools.com/php/func_libxml_get_errors.asp
https://www.w3schools.com/php/func_libxml_get_last_error.asp
https://www.w3schools.com/php/func_libxml_set_external_entity_loader.asp
https://www.w3schools.com/php/func_libxml_set_streams_context.asp
https://www.w3schools.com/php/func_libxml_use_internal_errors.asp

